Opuscula Math. 42, no. 2 (2022), 279-303
https://doi.org/10.7494/OpMath.2022.42.2.279
Opuscula Mathematica
Entire solutions for some critical equations in the Heisenberg group
Patrizia Pucci
Letizia Temperini
Abstract. We complete the study started in the paper [P. Pucci, L.Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5 (2023), Paper no. 007], giving some applications of its abstract results to get existence of solutions of certain critical equations in the entire Heinseberg group. In particular, different conditions for existence are given for critical horizontal \(p\)-Laplacian equations.
Keywords: Heisenberg group, entire solutions, critical exponents.
Mathematics Subject Classification: 35J62, 35J70, 35B08, 35J20, 35B09.
- T. Aubin, Problèmes isopérimétriques et espaces de Sobolev, Pacific J. Math. 227 (2006), 361-397.
- G. Autuori, P. Pucci, Existence of entire solutions for a class of quasilinear elliptic equations, NoDEA Nonlinear Differential Equations Appl. 20 (2013), 977-1009.
- L. Boccardo, F. Murat, Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations, Nonlinear Anal. 19 (1992), 581-597.
- J.F. Bonder, N. Saintier, A. Silva, The concentration-compactness principle for fractional order Sobolev spaces in unbounded domains and applications to the generalized fractional Brezis-Nirenberg problem, NoDEA Nonlinear Differential Equations Appl. 25 (2018), Article no. 52.
- A. Bonfiglioli, F. Uguzzoni, Nonlinear Liouville theorems for some critical problems on H-type groups, J. Funct. Anal. 207 (2004), 161-215.
- S. Bordoni, R. Filippucci, P. Pucci, Existence problems on Heisenberg groups involving Hardy and critical terms, J. Geom. Anal. 30 (2020), 1887-1917.
- H. Brezis, E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math. Soc. 88 (1983), 486-490.
- H. Brezis, L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477.
- G. Citti, Semilinear Dirichlet problem involving critical exponent for the Kohn Laplacian, Ann. Mat. Pura Appl. 169 (1995), 375-392.
- F. Demengel, E. Hebey, On some nonlinear equations on compact Riemannian manifolds, Adv. Differential Equations 3 (1998), 533-574.
- G.B. Folland, E.M. Stein, Estimates for the \(\overline \partial_b\) complex and analysis on the Heisenberg group, Comm. Pure Appl. Math. 27 (1974), 429-522.
- I. Fonseca, G. Leoni, Modern Methods in the Calculus of Variations: \(L^p\) Spaces, Springer Monographs in Mathematics, Springer, New York, 2007.
- N. Garofalo, E. Lanconelli, Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier 40 (1990), 313-356.
- N. Garofalo, D.-M. Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144.
- N. Garofalo, D. Vassilev, Symmetry properties of positive entire solutions of Yamabe-type equations on groups of Heisenberg type, Duke Math. J. 106 (2001), 411-448.
- D. Goel, V.D. Rădulescu, K. Sreenadh, Variational framework and Lewy-Stampacchia type estimates for nonlocal operators on Heisenberg group, arXiv:2012.15602.
- D. Goel, K. Sreenadh, Existence and nonexistence results for Kohn Laplacian with Hardy-Littlewood-Sobolev critical exponents, J. Math. Anal. Appl. 486 (2020), 123915, 29 pp.
- L. Hőrmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171.
- S.P. Ivanov, D.N. Vassilev, Extremals for the Sobolev inequality and the quaternionic contact Yamabe problem, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011.
- D. Jerison, J.M. Lee, A subelliptic, nonlinear eigenvalue problem and scalar curvature on CR manifolds, Microlocal analysis (Boulder, Colo., 1983), 57-63, Contemp. Math., vol. 27, Amer. Math. Soc., Providence, RI, 1984.
- D. Jerison, J.M. Lee, The Yamabe problem on CR manifolds, J. Differential Geom. 25 (1987), 167-197.
- D. Jerison, J.M. Lee, Extremals for the Sobolev inequality on the Heisenberg group and the CR Yamabe problem, J. Amer. Math. Soc. 1 (1988), 1-13.
- D. Jerison, J.M. Lee, Intrinsic CR normal coordinates and the CR Yamabe problem, J. Differential Geom. 29 (1989), 303-343.
- A. Loiudice, Semilinear subelliptic problems with critical growth on Carnot groups, Manuscripta Math. 124 (2007), 247-259.
- G. Molica Bisci, P. Pucci, Critical Dirichlet problems on \(\mathcal{H}\) domains of Carnot groups, Two nonlinear days in Urbino 2017, Electron. J. Diff. Eqns. 25, Special volume dedicated to the memory of Anna Aloe (2018), 179-196.
- G. Molica Bisci, D. Repovš, Yamabe-type equations on Carnot groups, Potential Anal. 46 (2017), 369-383.
- P. Pucci, L. Temperini, Existence for \((p,q)\) critical systems in the Heisenberg group, Adv. Nonlinear Anal. 9 (2020), 895-922.
- P. Pucci, L. Temperini, \((p,Q)\) systems with critical singular exponential nonlinearities in the Heisenberg group, Open Math. 18 (2020), 1423-1439.
- P. Pucci, L. Temperini, Existence for singular critical exponential \((p,Q)\) equations in the Heisenberg group, Adv. Calc. Var., https://doi.org/10.1515/acv-2020-0028. https://doi.org/10.1515/acv-2020-0028
- P. Pucci, L. Temperini, On the concentration-compactness principle for Folland-Stein spaces and for fractional horizontal Sobolev spaces, Math. Eng. 5 (2023), Special Issue: The interplay between local and nonlocal equations - dedicated to the memory of Professor Ireneo Peral, Paper no. 007, 21 pp.
- J. Simon, Régularité de la solution d’une équation non linéaire dans \(R^N\), Journées d’Analyse Non Linéaire (Proc. Conf., Besançon, 1977), Lecture Notes in Math., vol. 665, Springer, Berlin, 1978.
- G. Talenti, Best constant in Sobolev inequality, Ann. Mat. Pura Appl. 110 (1976), 353-372.
- D. Vassilev, Existence of solutions and regularity near the characteristic boundary for sub-Laplacian equations on Carnot groups, Pacific J. Math. 227 (2006), 361-397.
- Patrizia Pucci (corresponding author)
https://orcid.org/0000-0001-7242-8485- Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Via Vanvitelli 1, 06123 Perugia, Italy
- Letizia Temperini
https://orcid.org/0000-0003-2605-6873- Dipartimento di Matematica e Informatica \'Ulisse Dini\', Università degli Studi di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy
- Communicated by Vicentiu D. Rădulescu.
- Received: 2021-10-11.
- Accepted: 2021-11-03.
- Published online: 2022-02-25.

