Opuscula Math. 42, no. 2 (2022), 239-255
https://doi.org/10.7494/OpMath.2022.42.2.239

 
Opuscula Mathematica

Exponential decay of solutions to a class of fourth-order nonlinear hyperbolic equations modeling the oscillations of suspension bridges

Yang Liu
Chao Yang

Abstract. This paper is concerned with a class of fourth-order nonlinear hyperbolic equations subject to free boundary conditions that can be used to describe the nonlinear dynamics of suspension bridges.

Keywords: fourth-order nonlinear hyperbolic equations, weak solutions, exponential decay, a family of potential wells.

Mathematics Subject Classification: 35L35, 35D30, 35B40.

Full text (pdf)

  1. R.A. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  2. S. Baraket, V.D. Radulescu, Combined effects of concave-convex nonlinearities in a fourth-order problem with variable exponent, Adv. Nonlinear Stud. 16 (2016), 409-419.
  3. J.M.W. Brownjohn, Observations on non-linear dynamic characteristics of suspension bridges, Earthquake Engng. Struct. Dyn. 23 (1994), 1351-1367.
  4. A. Ferrero, F. Gazzola, A partially hinged rectangular plate as a model for suspension bridges, Discrete Contin. Dyn. Syst. 35 (2015), 5879-5908.
  5. F. Gazzola, Nonlinearity in oscillating bridges, Electron. J. Differential Equations 211 (2013), 1642-1654.
  6. W. Lacarbonara, Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling,
  7. A.C. Lazer, P.J. McKenna, Large scale oscillatory behaviour in loaded asymmetric systems, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 243-274.
  8. W. Lian, J. Wang, R. Xu, Global existence and blow up of solutions for pseudo-parabolic equation with singular potential, J. Differential Equations 269 (2020), 4914-4959.
  9. W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal. 9 (2020), 612-632.
  10. Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal. 64 (2006), 2665-2687.
  11. P.J. McKenna, W. Walter, Nonlinear oscillations in a suspension bridge, Arch. Ration. Mech. Anal. 98 (1987), 167-177.
  12. P.J. McKenna, W. Walter, Travelling waves in a suspension bridge, SIAM J. Appl. Math. 50 (1990), 703-715.
  13. A. Mohammed, V.D. Radulescu, A. Vitolo, Blow-up solutions for fully nonlinear equations: Existence, asymptotic estimates and uniqueness, Adv. Nonlinear Stud. 9 (2020), 39-64.
  14. L.E. Payne, D.H. Sattinger, Sadle points and instability of nonlinear hyperbolic equations, Israel J. Math. 22 (1975), 273-303.
  15. R.H. Plaut, F.M. Davis, Sudden lateral asymmetry and torsional oscillations of section models of suspension bridges, J. Sound Vib. 307 (2007), 894-905.
  16. V. Radulescu, Nonlinear Analysis - Theory and Methods, Springer, New York, 2019.
  17. D.H. Sattinger, On global solution of nonlinear hyperbolic equations, Arch. Rational Mech. Anal. 30 (1968), 148-172.
  18. E. Ventsel, T. Krauthammer, Thin Plates and Shells: Theory, Analysis, and Applications, Marcel Dekker, New York, 2001.
  19. Y. Wang, Finite time blow-up and global solutions for fourth order damped wave equations, J. Math. Anal. Appl. 418 (2014), 713-733.
  20. R. Xu, W. Lian, Y. Niu, Global well-posedness of coupled parabolic systems, Sci. China Math. 63 (2020), 321-356.
  21. R. Xu, J. Su, Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations, J. Funct. Anal. 264 (2013), 2732-2763.
  22. R. Xu, X. Wang, Y. Yang, S. Chen, Global solutions and finite time blow-up for fourth order nonlinear damped wave equation, J. Math. Phys. 59 (2018), 061503.
  23. R. Xu, M. Zhang, S. Chen, Y. Yang, J. Shen, The initial-boundary value problems for a class of six order nonlinear wave equation, Discrete Contin. Dyn. Syst. 37 (2017), 5631-5649.
  • Yang Liu
  • Northwest Minzu University, College of Mathematics and Computer Science, No. 1, Northwest New Village, Lanzhou 730030, P.R. China
  • Sichuan University, College of Mathematics, No. 24, South Section 1, Yihuan Road, Chengdu 610065, P.R. China
  • Chao Yang (corresponding author)
  • Harbin Engineering University, College of Mathematical Sciences, No. 145, Nantong Street, Harbin 150001, P.R. China
  • Communicated by Runzhang Xu.
  • Received: 2021-06-11.
  • Revised: 2021-10-14.
  • Accepted: 2021-10-15.
  • Published online: 2022-02-25.
Opuscula Mathematica - cover

Cite this article as:
Yang Liu, Chao Yang, Exponential decay of solutions to a class of fourth-order nonlinear hyperbolic equations modeling the oscillations of suspension bridges, Opuscula Math. 42, no. 2 (2022), 239-255, https://doi.org/10.7494/OpMath.2022.42.2.239

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.