Opuscula Math. 42, no. 1 (2022), 93-111
https://doi.org/10.7494/OpMath.2022.42.1.93

 
Opuscula Mathematica

All metric bases and fault-tolerant metric dimension for square of grid

Laxman Saha
Mithun Basak
Kalishankar Tiwary

Abstract. For a simple connected graph \(G=(V,E)\) and an ordered subset \(W = \{w_1,w_2,\ldots, w_k\}\) of \(V\), the code of a vertex \(v\in V\), denoted by \(\mathrm{code}(v)\), with respect to \(W\) is a \(k\)-tuple \((d(v,w_1),\ldots, d(v, w_k))\), where \(d(v, w_t)\) represents the distance between \(v\) and \(w_t\). The set \(W\) is called a resolving set of \(G\) if \(\mathrm{code}(u)\neq \mathrm{code}(v)\) for every pair of distinct vertices \(u\) and \(v\). A metric basis of \(G\) is a resolving set with the minimum cardinality. The metric dimension of \(G\) is the cardinality of a metric basis and is denoted by \(\beta(G)\). A set \(F\subset V\) is called fault-tolerant resolving set of \(G\) if \(F\setminus{\{v\}}\) is a resolving set of \(G\) for every \(v\in F\). The fault-tolerant metric dimension of \(G\) is the cardinality of a minimal fault-tolerant resolving set. In this article, a complete characterization of metric bases for \(G_{mn}^2\) has been given. In addition, we prove that the fault-tolerant metric dimension of \(G_{mn}^2\) is 4 if \(m+n\) is even. We also show that the fault-tolerant metric dimension of \(G_{mn}^2\) is at least 5 and at most 6 when \(m+n\) is odd.

Keywords: code, resolving set, metric dimension, fault-tolerant resolving set, fault-tolerant metric dimension.

Mathematics Subject Classification: 05C12, 05C05, 05C90, 05C76.

Full text (pdf)

  1. M. Basak, L. Saha, K. Tiwary, Metric dimension of zero-divisor graph for the ring \(\mathbb{Z}_n\), Int. J. Sci. Res. Math. Stat. Sci. 6 (2019), no. 1, 74-78.
  2. M. Basak, L. Saha, G. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs \(C_n(1, 2, 3)\), Theor. Comput. Sci. 817 (2020), 66-79.
  3. Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, L. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006), 2168-2181.
  4. J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M. Puertas, C. Seara, D. Wood, On the metric dimension of Cartesian products of graph, SIAM J. Discrete Math. 2 (2007), no. 21, 423-441.
  5. G. Chartrand, L. Eroh, M. Johnson, O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
  6. K. Chau, S. Gosselin, The metric dimension of circulant graphs and their Cartesian product, Opuscula Math. 37 (2017), no. 4, 509-534.
  7. V. Chvátal, Mastermind, Combinatorica 3 (1983), 325-329.
  8. L. Du Toit, T. Vetrík, On the metric dimension of circulant graphs with 2 generators, Kragujevac J. Math. 43 (2019), no. 1, 49-58.
  9. M.R. Garey, D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, Freeman, San Francisco 1979.
  10. C. Grigorious, T. Kalinowski, J. Ryan, S. Stephen, The metric dimension of the circulant graph \(C(n, \pm{1, 2, 3, 4})\), Australas. J. Combin. 69 (2017), no. 3, 417-441.
  11. M. Hallaway, C. Kang, E. Yi, On metric dimension of permutation graphs, J. Comb. Optim. 28 (2014), 814-826.
  12. F. Harary, R. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195.
  13. M. Imran, S. Bokhary, A. Baig, On the metric dimension of rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Struct. Appl. 3 (2015), no. 2, 45-59.
  14. M. Imran, H. Siddiqui, Computing the metric dimension of convex polytopes generated wheel related graphs, Acta Math. Hungar. 149 (2016), no. 1, 10-30.
  15. M. Jannesari, B. Omoomi, Characterization of \(n\)-vertex graphs with metric dimension \((n-3)\), Math. Bohem. 139 (2014), no. 1, 1-23.
  16. S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), 217-229.
  17. M.A. Maryam, A.A. Omar, H. Al-Ezeh, Metric dimension of some path related graphs, Glob. J. Pure Appl. Math. 13 (2017), no. 2, 149-157.
  18. R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process. 25 (1984), 113-121.
  19. L. Saha, Fault-tolerant metric dimension of cube of paths, J. Phys. Conf. Ser. 1714 (2021), no. 1, 012-019.
  20. L. Saha, M. Basak, K. Tiwary, Metric dimension of ideal-intersection graph of the ring \(\mathbb{Z}_n\), AKCE Int. J. Graphs Comb. 18 (2021), no. 2, 101-105.
  21. P. Slater, Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing 14 (1975), 549-559.
  22. P. Slater, Dominating and reference sets in graphs, J. Math. Phys. 22 (1988), 445-455.
  • Communicated by Andrzej Żak.
  • Received: 2020-05-24.
  • Revised: 2021-07-23.
  • Accepted: 2021-10-22.
  • Published online: 2022-01-20.
Opuscula Mathematica - cover

Cite this article as:
Laxman Saha, Mithun Basak, Kalishankar Tiwary, All metric bases and fault-tolerant metric dimension for square of grid, Opuscula Math. 42, no. 1 (2022), 93-111, https://doi.org/10.7494/OpMath.2022.42.1.93

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.