Opuscula Math. 42, no. 1 (2022), 93-111
https://doi.org/10.7494/OpMath.2022.42.1.93
Opuscula Mathematica
All metric bases and fault-tolerant metric dimension for square of grid
Laxman Saha
Mithun Basak
Kalishankar Tiwary
Abstract. For a simple connected graph \(G=(V,E)\) and an ordered subset \(W = \{w_1,w_2,\ldots, w_k\}\) of \(V\), the code of a vertex \(v\in V\), denoted by \(\mathrm{code}(v)\), with respect to \(W\) is a \(k\)-tuple \((d(v,w_1),\ldots, d(v, w_k))\), where \(d(v, w_t)\) represents the distance between \(v\) and \(w_t\). The set \(W\) is called a resolving set of \(G\) if \(\mathrm{code}(u)\neq \mathrm{code}(v)\) for every pair of distinct vertices \(u\) and \(v\). A metric basis of \(G\) is a resolving set with the minimum cardinality. The metric dimension of \(G\) is the cardinality of a metric basis and is denoted by \(\beta(G)\). A set \(F\subset V\) is called fault-tolerant resolving set of \(G\) if \(F\setminus{\{v\}}\) is a resolving set of \(G\) for every \(v\in F\). The fault-tolerant metric dimension of \(G\) is the cardinality of a minimal fault-tolerant resolving set. In this article, a complete characterization of metric bases for \(G_{mn}^2\) has been given. In addition, we prove that the fault-tolerant metric dimension of \(G_{mn}^2\) is 4 if \(m+n\) is even. We also show that the fault-tolerant metric dimension of \(G_{mn}^2\) is at least 5 and at most 6 when \(m+n\) is odd.
Keywords: code, resolving set, metric dimension, fault-tolerant resolving set, fault-tolerant metric dimension.
Mathematics Subject Classification: 05C12, 05C05, 05C90, 05C76.
- M. Basak, L. Saha, K. Tiwary, Metric dimension of zero-divisor graph for the ring \(\mathbb{Z}_n\), Int. J. Sci. Res. Math. Stat. Sci. 6 (2019), no. 1, 74-78.
- M. Basak, L. Saha, G. Das, K. Tiwary, Fault-tolerant metric dimension of circulant graphs \(C_n(1, 2, 3)\), Theor. Comput. Sci. 817 (2020), 66-79.
- Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, L. Ram, Network discovery and verification, IEEE J. Sel. Areas Commun. 24 (2006), 2168-2181.
- J. Cáceres, C. Hernando, M. Mora, I.M. Pelayo, M. Puertas, C. Seara, D. Wood, On the metric dimension of Cartesian products of graph, SIAM J. Discrete Math. 2 (2007), no. 21, 423-441.
- G. Chartrand, L. Eroh, M. Johnson, O. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math. 105 (2000), 99-113.
- K. Chau, S. Gosselin, The metric dimension of circulant graphs and their Cartesian product, Opuscula Math. 37 (2017), no. 4, 509-534.
- V. Chvátal, Mastermind, Combinatorica 3 (1983), 325-329.
- L. Du Toit, T. Vetrík, On the metric dimension of circulant graphs with 2 generators, Kragujevac J. Math. 43 (2019), no. 1, 49-58.
- M.R. Garey, D.S. Johnson, Computers and Intractibility: A Guide to the Theory of NP-Completeness, Freeman, San Francisco 1979.
- C. Grigorious, T. Kalinowski, J. Ryan, S. Stephen, The metric dimension of the circulant graph \(C(n, \pm{1, 2, 3, 4})\), Australas. J. Combin. 69 (2017), no. 3, 417-441.
- M. Hallaway, C. Kang, E. Yi, On metric dimension of permutation graphs, J. Comb. Optim. 28 (2014), 814-826.
- F. Harary, R. Melter, On the metric dimension of a graph, Ars Combin. 2 (1976), 191-195.
- M. Imran, S. Bokhary, A. Baig, On the metric dimension of rotationally-symmetric convex polytopes, J. Algebra Comb. Discrete Struct. Appl. 3 (2015), no. 2, 45-59.
- M. Imran, H. Siddiqui, Computing the metric dimension of convex polytopes generated wheel related graphs, Acta Math. Hungar. 149 (2016), no. 1, 10-30.
- M. Jannesari, B. Omoomi, Characterization of \(n\)-vertex graphs with metric dimension \((n-3)\), Math. Bohem. 139 (2014), no. 1, 1-23.
- S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math. 70 (1996), 217-229.
- M.A. Maryam, A.A. Omar, H. Al-Ezeh, Metric dimension of some path related graphs, Glob. J. Pure Appl. Math. 13 (2017), no. 2, 149-157.
- R.A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Gr. Image Process. 25 (1984), 113-121.
- L. Saha, Fault-tolerant metric dimension of cube of paths, J. Phys. Conf. Ser. 1714 (2021), no. 1, 012-019.
- L. Saha, M. Basak, K. Tiwary, Metric dimension of ideal-intersection graph of the ring \(\mathbb{Z}_n\), AKCE Int. J. Graphs Comb. 18 (2021), no. 2, 101-105.
- P. Slater, Leaves of trees, Proc. 6th Southeastern Conf. on Combinatorics, Graph Theory and Computing 14 (1975), 549-559.
- P. Slater, Dominating and reference sets in graphs, J. Math. Phys. 22 (1988), 445-455.
- Laxman Saha (corresponding author)
https://orcid.org/0000-0003-1563-0841
- Balurghat College, Department of Mathematics, Balurghat 733101, India
- Mithun Basak
https://orcid.org/0000-0001-7496-6682
- Balurghat College, Department of Mathematics, Balurghat 733101, India
- Kalishankar Tiwary
https://orcid.org/0000-0002-5773-2021
- Raiganj University, Department of Mathematics, Raiganj, 733134, India
- Communicated by Andrzej Żak.
- Received: 2020-05-24.
- Revised: 2021-07-23.
- Accepted: 2021-10-22.
- Published online: 2022-01-20.