Opuscula Math. 42, no. 1 (2022), 31-54
https://doi.org/10.7494/OpMath.2022.42.1.31

 
Opuscula Mathematica

γ-paired dominating graphs of cycles

Pannawat Eakawinrujee
Nantapath Trakultraipruk

Abstract. A paired dominating set of a graph \(G\) is a dominating set whose induced subgraph contains a perfect matching. The paired domination number, denoted by \(\gamma_{pr}(G)\), is the minimum cardinality of a paired dominating set of \(G\). A \(\gamma_{pr}(G)\)-set is a paired dominating set of cardinality \(\gamma_{pr}(G)\). The \(\gamma\)-paired dominating graph of \(G\), denoted by \(PD_{\gamma}(G)\), as the graph whose vertices are \(\gamma_{pr}(G)\)-sets. Two \(\gamma_{pr}(G)\)-sets \(D_1\) and \(D_2\) are adjacent in \(PD_{\gamma}(G)\) if there exists a vertex \(u\in D_1\) and a vertex \(v\notin D_1\) such that \(D_2=(D_1\setminus \{u\})\cup \{v\}\). In this paper, we present the \(\gamma\)-paired dominating graphs of cycles.

Keywords: paired dominating graph, paired dominating set, paired domination number.

Mathematics Subject Classification: 05C69, 05C38.

Full text (pdf)

  1. P. Eakawinrujee, N. Trakultraipruk, \(\gamma\)-paired dominating graphs of paths, Int. J. Math. Comput. Sci. 17 (2022), no. 2, 739-752.
  2. G.H. Fricke, S.M. Hedetniemi, S.T. Hedetniemi, K.R. Hutson, \(\gamma\)-graphs of graphs, Discuss. Math. Graph Theory 31 (2011), 517-531.
  3. R. Haas, K. Seyffarth, The \(k\)-dominating graph, Graphs Combin. 30 (2014), 609-617.
  4. T.W. Haynes, P.J. Slater, Paired-domination in graphs, Networks 32 (1998), 199-206.
  5. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
  6. T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
  7. S.A. Lakshmanan, A. Vijayakumar, The gamma graph of a graph, Graphs Combin. 7 (2010), 53-59.
  8. R. Samanmoo, N. Trakultraipruk, N. Ananchuen, \(\gamma\)-independent dominating graphs of paths and cycles, Maejo Int. J. Sci. Technol. 13(03) (2019), 245-256.
  9. D.B. West, Introduction to Graph Theory, Prentice Hall, Upper Saddle River, 2001.
  10. A. Wongsriya, N. Trakultraipruk, \(\gamma\)-total dominating graphs of paths and cycles, ScienceAsia 43 (2017), 326-333.
  • Pannawat Eakawinrujee
  • ORCID iD https://orcid.org/0000-0003-1336-1019
  • Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
  • Nantapath Trakultraipruk (corresponding author)
  • ORCID iD https://orcid.org/0000-0002-2826-0176
  • Department of Mathematics and Statistics, Faculty of Science and Technology, Thammasat University, Pathum Thani 12120, Thailand
  • Communicated by Dalibor Fronček.
  • Received: 2020-11-20.
  • Revised: 2021-08-30.
  • Accepted: 2021-12-01.
  • Published online: 2022-01-20.
Opuscula Mathematica - cover

Cite this article as:
Pannawat Eakawinrujee, Nantapath Trakultraipruk, γ-paired dominating graphs of cycles, Opuscula Math. 42, no. 1 (2022), 31-54, https://doi.org/10.7494/OpMath.2022.42.1.31

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.