Opuscula Math. 41, no. 6 (2021), 755-803
https://doi.org/10.7494/OpMath.2021.41.6.755

 
Opuscula Mathematica

Spectral properties of certain operators on the free Hilbert space \(\mathfrak{F}[H_{1},...,H_{N}]\) and the semicircular law

Ilwoo Cho

Abstract. In this paper, we fix \(N\)-many \(l^2\)-Hilbert spaces \(H_k\) whose dimensions are \(n_{k} \in \mathbb{N}^{\infty}=\mathbb{N} \cup \{\infty\}\), for \(k=1,\ldots,N\), for \(N \in \mathbb{N}\setminus\{1\}\). And then, construct a Hilbert space \(\mathfrak{F}=\mathfrak{F}[H_{1},\ldots,H_{N}]\) induced by \(H_{1},\ldots,H_{N}\), and study certain types of operators on \(\mathfrak{F}\). In particular, we are interested in so-called jump-shift operators. The main results (i) characterize the spectral properties of these operators, and (ii) show how such operators affect the semicircular law induced by \(\bigcup^N_{k=1} \mathcal{B}_{k}\), where \(\mathcal{B}_{k}\) are the orthonormal bases of \(H_{k}\), for \(k=1,\ldots,N\).

Keywords: separable Hilbert spaces, free Hilbert spaces, jump operators, shift operators, jump-shift operators, semicircular elements.

Mathematics Subject Classification: 46L10, 46L54, 47L30, 47L55.

Full text (pdf)

  1. M. Ahsanullah, Some inferences on semicircular distribution, J. Stat. Theory Appl. 15 (2016), no. 3, 207-213.
  2. D. Alpay, P. Jorgensen, Spectral theory for Gaussian processes: reproducing kernels, boundaries, and \(L^2\)-wavelet generators with fractional scales, Numer. Funct. Anal. Optim. 36 (2015), no. 10, 1239-1285.
  3. D. Alpay, P. Jorgensen, D. Levanony, On the equivalence of probability spaces, J. Theoret. Probab. 30 (2017), no. 3, 813-841.
  4. D. Alpay, P. Jorgensen, D. Levanony, A class of Gaussian processes with fractional spectral measures, J. Funct. Anal. 261 (2011), no. 2, 507-541.
  5. D. Alpay, P. Jorgensen, G. Salomon, On free stochastic processes and their derivatives, Stochastic Process. Appl. 124 (2014), no. 10, 3392-3411.
  6. H. Bercovici, D. Voiculescu, Superconvergence to the central limit and failure of the Cramér theorem for free random variables, Probab. Theory Related Fields 103 (1995), no. 2, 215-222.
  7. M. Bozhe\v{i}ko, E.V. Litvinov, I.V. Rodionova, An extended anyon Fock space and non-commutative Meixner-type orthogonal polynomials in the infinite-dimensional case, Uspekhi Mat. Nauk 70 no. 5, 75-120, translation in Russian Math. Surveys 70 (2015), no. 5, 857-899
  8. M. Bożejko, W. Ejsmont, T. Hasebe, Noncommutative probability of type \(D\), Internat. J. Math. 28 (2017), no. 2, 1750010, 30 pp.
  9. I. Cho, Banach \(\ast\)-algebras generated by semicircular elements induced by certain orthogonal projections, Opuscula Math. 38 (2018), no. 4, 501-535.
  10. I. Cho, Semicircular-like laws and the semicircular law induced by orthogonal projections, Complex Anal. Oper. Theory 12 (2018), no. 7, 1657-1695.
  11. I. Cho, Certain Banach-space operators acting on the semicircular elements induced by orthogonal projections, Mathematical Modelling, Applied Analysis and Computation, 1-39, Springer Proc. Math. Stat., 272, Springer, Singapore, 2019.
  12. I. Cho, J. Dong, Catalan numbers and free distributions of mutually free multisemicircular elements (2018), submitted.
  13. I. Cho, P.E.T. Jorgensen, Semicircular Elements Induced by Projections on Separable Hilbert Spaces, Linear Systems, Signal Processing and Hypercomplex Analysis , Oper. Theory Adv. Appl., 275, Linear Oper. Linear Syst., Birkhäuser/Springer, Cham, 2019, 167-209.
  14. A. Connes, Noncommutative Geometry, Academic Press, Inc., San Diego, CA, 1994.
  15. P.R. Halmos, A Hilbert Space Problem Book, Graduate Texts in Mathematics, 19. Springer-Verlag, New York-Berlin, 1982.
  16. I. Nourdin, G. Peccati, R. Speicher, Multi-dimensional semicircular limits on the free Wigner chaos, Stochastic Analysis, Random Fields and Applications VII, 211-221, Progr. Probab., 67, Birkhäuser/Springer, Basel, 2013.
  17. V. Pata, The central limit theorem for free additive convolution, J. Funct. Anal. 140 (1996), no. 2, 359-380.
  18. F. Radulescu, Random matrices, amalgamated free products and subfactors of the von Neumann algebra of a free group of noninteger index, Invent. Math. 115 (1994), no. 2, 347-389.
  19. P. Shor, Quantum Information Theory: Results and Open Problems, Geom. Funct. Anal (GAFA), Special Volume: GAFA2000, (2000), 816-838.
  20. R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Mem. Amer. Math. Soc. 132 (1998), no. 627.
  21. R. Speicher, Free probability and random matrices, Proceedings of the International Congress of Mathematicians, Seoul 2014, vol. III, Published by Kyung Moon Sa (2014), 477-501.
  22. D. Voiculescu, Free probability for pairs of faces I, Comm. Math. Phys. 332 (2014), no. 3, 955-980.
  23. D. Voiculescu, K. Dykema, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, American Mathematical Society, Providence, RI, 1992.
  24. Y. Yin, Z. Bai, J. Hu, On the semicircular law of large-dimensional random quaternion matrices, J. Theoret. Probab. 29 (2016), no. 3, 1100-1120.
  • Ilwoo Cho
  • St. Ambrose University, Department of Mathematics and Statistics, 518 W. Locust St., Davenport, Iowa, 52803, U.S.A.
  • Communicated by P.A. Cojuhari.
  • Received: 2020-11-05.
  • Accepted: 2021-04-03.
  • Published online: 2021-11-29.
Opuscula Mathematica - cover

Cite this article as:
Ilwoo Cho, Spectral properties of certain operators on the free Hilbert space \(\mathfrak{F}[H_{1},...,H_{N}]\) and the semicircular law, Opuscula Math. 41, no. 6 (2021), 755-803, https://doi.org/10.7494/OpMath.2021.41.6.755

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.