Opuscula Math. 41, no. 5 (2021), 701-723
https://doi.org/10.7494/OpMath.2021.41.5.701

 
Opuscula Mathematica

Certain properties of continuous fractional wavelet transform on Hardy space and Morrey space

Amit K. Verma
Bivek Gupta

Abstract. In this paper we define a new class of continuous fractional wavelet transform (CFrWT) and study its properties in Hardy space and Morrey space. The theory developed generalize and complement some of already existing results.

Keywords: fractional Fourier transform, continuous fractional wavelet transform, Hardy space, Morrey space.

Mathematics Subject Classification: 42B10, 42C40, 46E30.

Full text (pdf)

  1. L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42 (1994), 3084-3091.
  2. A. Almeida, S. Samko, Approximation in Morrey spaces, J. Funct. Anal. 272 (2017), 2392-2411.
  3. M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003).
  4. N.M. Chuong, D.V. Duong, Boundedness of the wavelet integral operator on weighted function spaces, Russ. J. Math. Phys. 20 (2013), 268-275.
  5. H. Dai, Z. Zheng, W. Wang, A new fractional wavelet transform, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 19-36.
  6. I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
  7. K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
  8. Y. Guo, B.-Z. Li, The linear canonical wavelet transform on some function spaces, Int. J. Wavelets Multiresolut. Inf. Process. 16 (2018), 1850010.
  9. F. Gurbuz, Weighted Morrey and weighted fractional Sobolev-Morrey spaces estimates for a large class of pseudo-differential operators with smooth symbols, J. Pseudo-Differ. Oper. Appl. 7 (2016), 595-607.
  10. F. Gürbüz, Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized Morrey spaces, Math. Notes 101 (2017), 429-442.
  11. F. Gürbüz, Generalized weighted Morrey estimates for Marcinkiewicz integrals with rough kernel associated with Schrödinger operator and their commutators, Chin. Ann. Math. Ser. B 41 (2020), 77-98.
  12. A.A. Kilbas, Y.F. Luchko, H. Martinez, J.J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operators, Integral Transforms Spec. Funct. 21 (2010), 779-795.
  13. Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets, J. Fourier Anal. Appl. 18 (2012), 1067-1111.
  14. Y.F. Luchko, H. Martinez, J.J. Trujillo, Fractional Fourier transform and some of its applications, Fract. Calc. Appl. Anal. 11 (2008), 457-470.
  15. A.L. Mazzucato, Decomposition of Besov-Morrey spaces, Contemp. Math. 320 (2003), 279-294.
  16. A.C. McBride, F.H. Kerr, On Namias's fractional Fourier transforms, IMA J. Appl. Math. 39 (1987), 159-175.
  17. D. Mendlovic, Z. Zalevsky, D. Mas, J. García, C. Ferreira, Fractional wavelet transform, Appl. Opt. 36 (1997), 4801-4806.
  18. Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.
  19. C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
  20. V. Namias, The fractional order Fourier transform and its application to quantum mechanics, MA J. Appl. Math. 25 (1980), 241-265.
  21. A. Prasad, S. Manna, A. Mahato, V.K. Singh, The generalized continuous wavelet transform associated with the fractional Fourier transform, J. Comput. Appl. Math. 259 (2014), 660-671.
  22. R.S. Pathak, The wavelet transform of distributions, Tohoku Math. J., Second Series 56 (2004), 411-421.
  23. R.S. Pathak, S.K. Singh, The wavelet transform on spaces of type S, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 837-850.
  24. R.S. Pathak, S.K. Singh, Boundedness of the wavelet transform in certain function spaces, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), Article 23, 8 pp.
  25. S. Pilipović, D. Rakić, N. Teofanov, J. Vindas, The wavelet transforms in Gelfand-Shilov spaces, Collect. Math. 67 (2016), 443-460.
  26. A. Prasad, P. Kumar, The continuous fractional wavelet transform on generalized weighted Sobolev spaces, Asian-Eur. J. Math. 8 (2015), 1550054.
  27. A. Prasad, P. Kumar, The continuous fractional wavelet transform on a generalized Sobolev space, Int. J. Wavelets Multiresolut. Inf. Process. 14 (2016), 1650046.
  28. A. Prasad, P. Kumar, Fractional continuous wavelet transform on some function spaces, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 86 (2016), 57-64.
  29. A. Prasad, A. Mahato, The fractional wavelet transform on spaces of type S, Integral Transforms Spec. Funct. 23 (2012), 237-249.
  30. A. Prasad, A. Mahato, The fractional wavelet transform on spaces of type W, Integral Transforms Spec. Funct. 24 (2013), 239-250.
  31. A. Rieder, The wavelet transform on Sobolev spaces and its approximation properties, Numer. Math. 58 (1990), 875-894.
  32. Y. Sawano, Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey spaces, Funct. Approx. Comment. Math. 38 (2008), 93-107.
  33. Y. Sawano, H. Tanaka, Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces, Math. Z. 257 (2007), 871-905.
  34. J. Shi, N.T. Zhang, X.P. Liu, A novel fractional wavelet transform and its applications, Sci. China Inf. Sci. 55 (2012), 1270-1279.
  35. H.M. Srivastava, K. Khatterwani, S.K. Upadhyay, A certain family of fractional wavelet transformations, Math. Methods Appl. Sci. 42 (2019), 3103-3122.
  36. H.M. Srivastava, S.K. Upadhyay, K. Khatterwani, A family of pseudo-differential operators on the Schwartz space associated with the fractional Fourier transform, Russ. J. Math. Phys. 24 (2017), 534-543.
  37. S.K. Upadhyay, K. Khatterwani, Continuous fractional wavelet transform, J. Int. Acad. Phys. Sci. 21 (2018), 55-61.
  38. D. Wei, Y-M. Li, Generalized wavelet transform based on the convolution operator in the linear canonical transform domain, Optik 125 (2014), 4491-4496.
  • Communicated by Semyon B. Yakubovich.
  • Received: 2020-06-01.
  • Revised: 2021-08-14.
  • Accepted: 2021-08-17.
  • Published online: 2021-09-30.
Opuscula Mathematica - cover

Cite this article as:
Amit K. Verma, Bivek Gupta, Certain properties of continuous fractional wavelet transform on Hardy space and Morrey space, Opuscula Math. 41, no. 5 (2021), 701-723, https://doi.org/10.7494/OpMath.2021.41.5.701

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.