Opuscula Math. 41, no. 5 (2021), 701-723
https://doi.org/10.7494/OpMath.2021.41.5.701
Opuscula Mathematica
Certain properties of continuous fractional wavelet transform on Hardy space and Morrey space
Abstract. In this paper we define a new class of continuous fractional wavelet transform (CFrWT) and study its properties in Hardy space and Morrey space. The theory developed generalize and complement some of already existing results.
Keywords: fractional Fourier transform, continuous fractional wavelet transform, Hardy space, Morrey space.
Mathematics Subject Classification: 42B10, 42C40, 46E30.
- L.B. Almeida, The fractional Fourier transform and time-frequency representations, IEEE Trans. Signal Process. 42 (1994), 3084-3091.
- A. Almeida, S. Samko, Approximation in Morrey spaces, J. Funct. Anal. 272 (2017), 2392-2411.
- M. Bownik, Anisotropic Hardy spaces and wavelets, Mem. Amer. Math. Soc. 164 (2003).
- N.M. Chuong, D.V. Duong, Boundedness of the wavelet integral operator on weighted function spaces, Russ. J. Math. Phys. 20 (2013), 268-275.
- H. Dai, Z. Zheng, W. Wang, A new fractional wavelet transform, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 19-36.
- I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
- K. Gröchenig, Foundations of Time-Frequency Analysis, Birkhäuser, Boston, 2001.
- Y. Guo, B.-Z. Li, The linear canonical wavelet transform on some function spaces, Int. J. Wavelets Multiresolut. Inf. Process. 16 (2018), 1850010.
- F. Gurbuz, Weighted Morrey and weighted fractional Sobolev-Morrey spaces estimates for a large class of pseudo-differential operators with smooth symbols, J. Pseudo-Differ. Oper. Appl. 7 (2016), 595-607.
- F. Gürbüz, Sublinear operators with rough kernel generated by Calderón-Zygmund operators and their commutators on generalized Morrey spaces, Math. Notes 101 (2017), 429-442.
- F. Gürbüz, Generalized weighted Morrey estimates for Marcinkiewicz integrals with rough kernel associated with Schrödinger operator and their commutators, Chin. Ann. Math. Ser. B 41 (2020), 77-98.
- A.A. Kilbas, Y.F. Luchko, H. Martinez, J.J. Trujillo, Fractional Fourier transform in the framework of fractional calculus operators, Integral Transforms Spec. Funct. 21 (2010), 779-795.
- Y. Liang, Y. Sawano, T. Ullrich, D. Yang, W. Yuan, New characterizations of Besov-Triebel-Lizorkin-Hausdorff spaces including coorbits and wavelets, J. Fourier Anal. Appl. 18 (2012), 1067-1111.
- Y.F. Luchko, H. Martinez, J.J. Trujillo, Fractional Fourier transform and some of its applications, Fract. Calc. Appl. Anal. 11 (2008), 457-470.
- A.L. Mazzucato, Decomposition of Besov-Morrey spaces, Contemp. Math. 320 (2003), 279-294.
- A.C. McBride, F.H. Kerr, On Namias's fractional Fourier transforms, IMA J. Appl. Math. 39 (1987), 159-175.
- D. Mendlovic, Z. Zalevsky, D. Mas, J. García, C. Ferreira, Fractional wavelet transform, Appl. Opt. 36 (1997), 4801-4806.
- Y. Meyer, Wavelets and Operators, Cambridge University Press, Cambridge, 1992.
- C.B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126-166.
- V. Namias, The fractional order Fourier transform and its application to quantum mechanics, MA J. Appl. Math. 25 (1980), 241-265.
- A. Prasad, S. Manna, A. Mahato, V.K. Singh, The generalized continuous wavelet transform associated with the fractional Fourier transform, J. Comput. Appl. Math. 259 (2014), 660-671.
- R.S. Pathak, The wavelet transform of distributions, Tohoku Math. J., Second Series 56 (2004), 411-421.
- R.S. Pathak, S.K. Singh, The wavelet transform on spaces of type S, Proc. Roy. Soc. Edinburgh Sect. A 136 (2006), 837-850.
- R.S. Pathak, S.K. Singh, Boundedness of the wavelet transform in certain function spaces, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), Article 23, 8 pp.
- S. Pilipović, D. Rakić, N. Teofanov, J. Vindas, The wavelet transforms in Gelfand-Shilov spaces, Collect. Math. 67 (2016), 443-460.
- A. Prasad, P. Kumar, The continuous fractional wavelet transform on generalized weighted Sobolev spaces, Asian-Eur. J. Math. 8 (2015), 1550054.
- A. Prasad, P. Kumar, The continuous fractional wavelet transform on a generalized Sobolev space, Int. J. Wavelets Multiresolut. Inf. Process. 14 (2016), 1650046.
- A. Prasad, P. Kumar, Fractional continuous wavelet transform on some function spaces, Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 86 (2016), 57-64.
- A. Prasad, A. Mahato, The fractional wavelet transform on spaces of type S, Integral Transforms Spec. Funct. 23 (2012), 237-249.
- A. Prasad, A. Mahato, The fractional wavelet transform on spaces of type W, Integral Transforms Spec. Funct. 24 (2013), 239-250.
- A. Rieder, The wavelet transform on Sobolev spaces and its approximation properties, Numer. Math. 58 (1990), 875-894.
- Y. Sawano, Wavelet characterization of Besov-Morrey and Triebel-Lizorkin-Morrey spaces, Funct. Approx. Comment. Math. 38 (2008), 93-107.
- Y. Sawano, H. Tanaka, Decompositions of Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces, Math. Z. 257 (2007), 871-905.
- J. Shi, N.T. Zhang, X.P. Liu, A novel fractional wavelet transform and its applications, Sci. China Inf. Sci. 55 (2012), 1270-1279.
- H.M. Srivastava, K. Khatterwani, S.K. Upadhyay, A certain family of fractional wavelet transformations, Math. Methods Appl. Sci. 42 (2019), 3103-3122.
- H.M. Srivastava, S.K. Upadhyay, K. Khatterwani, A family of pseudo-differential operators on the Schwartz space associated with the fractional Fourier transform, Russ. J. Math. Phys. 24 (2017), 534-543.
- S.K. Upadhyay, K. Khatterwani, Continuous fractional wavelet transform, J. Int. Acad. Phys. Sci. 21 (2018), 55-61.
- D. Wei, Y-M. Li, Generalized wavelet transform based on the convolution operator in the linear canonical transform domain, Optik 125 (2014), 4491-4496.
- Amit K. Verma (corresponding author)
https://orcid.org/0000-0001-8768-094X
- IIT Patna, Department of Mathematics, Bihta, Patna 801103, (BR) India
- Bivek Gupta
https://orcid.org/0000-0003-2269-6427
- IIT Patna, Department of Mathematics, Bihta, Patna 801103, (BR) India
- Communicated by Semyon B. Yakubovich.
- Received: 2020-06-01.
- Revised: 2021-08-14.
- Accepted: 2021-08-17.
- Published online: 2021-09-30.