Opuscula Math. 41, no. 5 (2021), 667-683
https://doi.org/10.7494/OpMath.2021.41.5.667
Opuscula Mathematica
Coboundaries of commuting Borel automorphisms
Abstract. We show that if \(S\), \(T\) are two commuting automorphisms of a standard Borel space such that they generate a free Borel \(\mathbb{Z}^2\)-action then \(S\) and \(T\) do not have same sets of real valued bounded coboundaries. We also prove a weaker form of Rokhlin Lemma for Borel \(\mathbb{Z}^d\)-actions.
Keywords: coboundries, Rokhlin Lemma, Borel \(\mathbb{Z}^d\)-action.
Mathematics Subject Classification: 37A40, 37A99, 37B99.
- H. Becker, Cocycles and continuity, Trans. Amer. Math. Soc. 365 (2013), no. 2, 671-719.
- H. Becker, A.S. Kechris, The Descriptive Set Theory of Polish Group Actions, London Mathematical Society Lecture Note Series, vol. 232, Cambridge University Press, Cambridge, 1996.
- S. Bezuglyi, A.H. Dooley, J. Kwiatkowski, Topologies on the group of Borel automorphisms of a standard Borel space, Topol. Methods Nonlinear Anal. 27 (2006), no. 2, 333-385.
- S.I. Bezuglyi, V.Y. Golodets, Weak equivalence and the structures of cocycles of an ergodic automorphism, Publ. Res. Inst. Math. Sci. 27 (1991), no. 4, 577-625.
- C.T. Conley, B.D. Miller, Measure reducibility of countable Borel equivalence relations, Ann. of Math. (2) 185 (2017), no. 2, 347-402.
- J.-P. Conze, Entropie d’un groupe abélien de transformations, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 25 (1972/73), 11-30.
- J.-P. Conze, A. Raugi, On the ergodic decomposition for a cocycle, Colloq. Math. 117 (2009), no. 1, 121-156.
- A.I. Danilenko, Quasinormal subrelations of ergodic equivalence relations, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3361-3370.
- R. Dougherty, S. Jackson, A.S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans. Amer. Math. Soc. 341 (1994), no. 1, 193-225.
- J. Feldman, C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), no. 2, 289-324.
- J. Feldman, C.E. Sutherland, R.J. Zimmer, Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems 9 (1989), no. 2, 239-269.
- S. Gao, S. Jackson, Countable abelian group actions and hyperfinite equivalence relations, Invent. Math. 201 (2015), no. 1, 309-383.
- V.Y. Golodets, S.D. Sinelshchikov, Outer conjugacy for actions of continuous amenable groups, Publ. Res. Inst. Math. Sci. 23 (1987), no. 5, 737-769.
- V.Y. Golodets, S.D. Sinelshchikov, Classification and structure of cocycles of amenable ergodic equivalence relations, J. Funct. Anal. 121 (1994), no. 2, 455-485.
- T. Hamachi, Canonical subrelations of ergodic equivalence relations-subrelations, J. Operator Theory 43 (2000), no. 1, 3-34.
- G. Hjorth, Classification and Orbit Equivalence Relations, Mathematical Surveys and Monographs, vol. 75, American Mathematical Society, Providence, RI, 2000.
- S. Jackson, A.S. Kechris, A. Louveau, Countable Borel equivalence relations, J. Math. Log. 2 (2002), no. 1, 1-80.
- A.S. Kechris, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995.
- A.S. Kechris, The theory of countable Borel equivalence relations, preprint, 2019.
- A.S. Kechris, B.D. Miller, Topics in Orbit Equivalence, Lecture Notes in Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004.
- I. Kornfeld, Coboundaries for commuting transformations, [in:] Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), 1999, vol. 43, 528-539.
- G.W. Mackey, Ergodic theory and virtual groups, Math. Ann. 166 (1966), 187-207.
- B. Miller, The existence of measures of a given cocycle. I. Atomless, ergodic \(\sigma\)-finite measures, Ergodic Theory Dynam. Systems 28 (2008), no. 5, 1599-1613.
- B.D. Miller, Coordinatewise decomposition, Borel cohomology, and invariant measures, Fund. Math. 191 (2006), no. 1, 81-94.
- B.D. Miller, On the existence of cocycle-invariant Borel probability measures, Ergodic Theory Dynam. Systems 40 (2020), no. 11, 3150-3168.
- C.C. Moore, Restrictions of unitary representations to subgroups and ergodic theory: Group extensions and group cohomology,[in:] Group Representations in Math. and Phys. (Battelle Seattle 1969 Rencontres), Springer, Berlin, Lecture Notes in Physics, vol. 6, 1-35, 1970.
- M.G. Nadkarni, Basic Ergodic Theory, Texts and Readings in Mathematics, vol. 6, Hindustan Book Agency, New Delhi, 3rd ed., 2013.
- N.S. Ormes, Real coboundaries for minimal Cantor systems, Pacific J. Math. 195 (2000), no. 2, 453-476.
- A. Ramsay, Virtual groups and group actions, Advances in Math. 6 (1971), 253-322.
- K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, vol. 1, Macmillan Company of India, Ltd., Delhi, 1977.
- K. Schmidt, Algebraic Ideas in Ergodic Theory, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC, American Mathematical Society, Providence, RI, 1990.
- T.A. Slaman, J.R. Steel, Definable functions on degrees, [in:] Cabal Seminar 81-85, Lecture Notes in Math., vol. 1333, Springer, Berlin, 37-55, 1988.
- V.S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220.
- B. Weiss, Measurable dynamics, [in:] Conference in modern analysis and probability (New Haven, Conn., 1982), Contemp. Math., vol. 26, Amer. Math. Soc., Providence, RI, 395-421, 1984.
- R.J. Zimmer, Ergodic Theory and Semisimple Groups, Monographs in Mathematics, vol. 81, Birkhäuser Verlag, Basel, 1984.
- Shrey Sanadhya
- The University of Iowa, Department of Mathematics, 14 MacLean Hall, Iowa City, Iowa 52242, USA
- Communicated by P.A. Cojuhari.
- Received: 2021-05-29.
- Revised: 2021-07-22.
- Accepted: 2021-08-04.
- Published online: 2021-09-30.