Opuscula Math. 41, no. 4 (2021), 509-537
https://doi.org/10.7494/OpMath.2021.41.4.509

 
Opuscula Mathematica

Asymptotic expansions for the first hitting times of Bessel processes

Yuji Hamana
Ryo Kaikura
Kosuke Shinozaki

Abstract. We study a precise asymptotic behavior of the tail probability of the first hitting time of the Bessel process. We deduce the order of the third term and decide the explicit form of its coefficient.

Keywords: Bessel process, hitting time, tail probability, modified Bessel function, asymptotic expansion, Laplace transform.

Mathematics Subject Classification: 60G40, 60J60, 41A60, 30C10.

Full text (pdf)

  1. T. Byczkowski, M. Ryznar, Hitting distribution of geometric Brownian motion, Studia Math. 173 (2006), 19-38.
  2. Z. Ciesielski, S.J. Taylor, First passage times and sojourn times for Brownian motion in space and the exact Hausdorff measure of the sample path, Trans. Amer. Math. Soc. 103 (1962), 434-450.
  3. S. Chiba, Asymptotic expansions for hitting distributions of Bessel process, Master Thesis, Tohoku University (2017) [in Japanese].
  4. H. Geman, M. Yor, Bessel processes, Asian options, and perpetuities, Mathematical Finance 3 (1993), 349-375.
  5. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th ed., Academic Press, 2007.
  6. Y. Hamana, H. Matsumoto, The probability densities of the first hitting times of Bessel processes, J. Math-for-Ind. 4B (2012), 91-95.
  7. Y. Hamana, H. Matsumoto, The probability distributions of the first hitting times of Bessel processes, Trans. Amer. Math. Soc. 365 (2013), 5237-5257.
  8. Y. Hamana, H. Matsumoto, Asymptotics of the probability distributions of the first hitting times of Bessel processes, Electron. Commun. Probab. 19 (2014), no. 5, 1-5.
  9. Y. Hamana, H. Matsumoto, Hitting times of Bessel processes, volume of Wiener sausages and zeros of Macdonald functions, J. Math. Soc. Japan 68 (2016), 1615-1653.
  10. Y. Hamana, H. Matsumoto, Precise asymptotic formulae for the first hitting times of Bessel processes, Tokyo J. Math. 41 (2018), 603-615.
  11. Y. Hariya, Some asymptotic formulae for Bessel process, Markov Process. Related Fields 21 (2015), 293-316.
  12. M.G.H. Ismail, Integral representations and complete monotonicity of various quotients of Bessel functions, Canad. J. Math. 29 (1977), 1198-1207.
  13. K. Itô, H.P. McKean, Diffusion Processes and Their Sample Paths, Springer-Verlag, 1974.
  14. J.T. Kent, Some probabilistic properties of Bessel functions, Ann. Probab. 6 (1978), 760-770.
  15. J.T. Kent, Eigenvalue expansion for diffusion hitting times, Z. Wahr. Ver. Gebiete 52 (1980), 309-319.
  16. N.N. Lebedev, Special Functions and Their Applications, Dover, 1972.
  17. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion, 3rd ed., Springer-Verlag, 1999.
  18. M. Yor, Exponential Functionals of Brownian Motion and Related Processes, Springer, 2001.
  • Ryo Kaikura
  • 1-6-9 Kotohira-honmachi, Kumamoto 860-0814, Japan
  • Kosuke Shinozaki
  • Leopalace PCOTT205, 2-6-1 Miyauchi, Kawasaki 211-0051, Japan
  • Communicated by Palle E.T. Jorgensen.
  • Received: 2021-05-10.
  • Revised: 2021-06-07.
  • Accepted: 2021-06-08.
  • Published online: 2021-07-09.
Opuscula Mathematica - cover

Cite this article as:
Yuji Hamana, Ryo Kaikura, Kosuke Shinozaki, Asymptotic expansions for the first hitting times of Bessel processes, Opuscula Math. 41, no. 4 (2021), 509-537, https://doi.org/10.7494/OpMath.2021.41.4.509

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.