Opuscula Math. 41, no. 3 (2021), 437-446
https://doi.org/10.7494/OpMath.2021.41.3.437

 
Opuscula Mathematica

Quadratic inequalities for functionals in l

Gerd Herzog
Peer Chr. Kunstmann

Abstract. For a class of operators \(T\) on \(l^{\infty}\) and \(T\)-invariant functionals \(\varphi\) we prove inequalities between \(\varphi(x)\), \(\varphi(x^2)\) and the upper density of the sets \[P_r:=\{n \in \mathbb{N}_0: \varphi((T^{n}x)\cdot x) \gt r\}.\] Applications are given to Banach limits and integrals.

Keywords: Banach algebras of bounded functions, operator-invariant functionals, Banach limits.

Mathematics Subject Classification: 47B37, 47B48, 47B60.

Full text (pdf)

  1. N.N. Avdeev, E.M. Semenov, A.S. Usachev, Banach limits and a measure on the set of 0-1-sequences, Mat. Zametki 106 (2019), 784-787.
  2. T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015.
  3. M. Krüppel, Eine Ungleichung für Banach-Limites beschränkter Zahlenfolgen, Rostock. Math. Kolloq. 48 (1995), 75-79.
  4. G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
  5. E.M. Semenov, F.A. Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 259 (2010), 1517-1541.
  6. L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308-311.
  • Gerd Herzog (corresponding author)
  • Karlsruhe Institute for Technology, Institute for Analysis, D-76128 Karlsruhe, Germany
  • Peer Chr. Kunstmann
  • Karlsruhe Institute for Technology, Institute for Analysis, D-76128 Karlsruhe, Germany
  • Communicated by Alexander Gomilko.
  • Received: 2020-11-20.
  • Accepted: 2021-01-23.
  • Published online: 2021-04-19.
Opuscula Mathematica - cover

Cite this article as:
Gerd Herzog, Peer Chr. Kunstmann, Quadratic inequalities for functionals in l, Opuscula Math. 41, no. 3 (2021), 437-446, https://doi.org/10.7494/OpMath.2021.41.3.437

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.