Opuscula Math. 41, no. 3 (2021), 437-446
https://doi.org/10.7494/OpMath.2021.41.3.437
Opuscula Mathematica
Quadratic inequalities for functionals in l∞
Gerd Herzog
Peer Chr. Kunstmann
Abstract. For a class of operators \(T\) on \(l^{\infty}\) and \(T\)-invariant functionals \(\varphi\) we prove inequalities between \(\varphi(x)\), \(\varphi(x^2)\) and the upper density of the sets \[P_r:=\{n \in \mathbb{N}_0: \varphi((T^{n}x)\cdot x) \gt r\}.\] Applications are given to Banach limits and integrals.
Keywords: Banach algebras of bounded functions, operator-invariant functionals, Banach limits.
Mathematics Subject Classification: 47B37, 47B48, 47B60.
- N.N. Avdeev, E.M. Semenov, A.S. Usachev, Banach limits and a measure on the set of 0-1-sequences, Mat. Zametki 106 (2019), 784-787.
- T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer, Cham, 2015.
- M. Krüppel, Eine Ungleichung für Banach-Limites beschränkter Zahlenfolgen, Rostock. Math. Kolloq. 48 (1995), 75-79.
- G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- E.M. Semenov, F.A. Sukochev, Invariant Banach limits and applications, J. Funct. Anal. 259 (2010), 1517-1541.
- L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308-311.
- Gerd Herzog (corresponding author)
- Karlsruhe Institute for Technology, Institute for Analysis, D-76128 Karlsruhe, Germany
- Peer Chr. Kunstmann
- Karlsruhe Institute for Technology, Institute for Analysis, D-76128 Karlsruhe, Germany
- Communicated by Alexander Gomilko.
- Received: 2020-11-20.
- Accepted: 2021-01-23.
- Published online: 2021-04-19.