Opuscula Math. 41, no. 1 (2021), 5-23
https://doi.org/10.7494/OpMath.2021.41.1.5
Opuscula Mathematica
Some existence results for a nonlocal non-isotropic problem
Rachid Bentifour
Sofiane El-Hadi Miri
Abstract. In this paper we deal with the following problem \[\begin{cases}-\sum\limits_{i=1}^{N}\left[ \left( a+b\int\limits_{\, \Omega }\left\vert \partial _{i}u\right\vert ^{p_{i}}dx\right) \partial _{i}\left( \left\vert \partial _{i}u\right\vert ^{p_{i}-2}\partial _{i}u\right) \right]=\frac{f(x)}{u^{\gamma }}\pm g(x)u^{q-1} & in\ \Omega, \\ u\geq 0 & in\ \Omega, \\ u=0 & on\ \partial \Omega, \end{cases}\] where \(\Omega\) is a bounded regular domain in \(\mathbb{R}^{N}\). We will assume without loss of generality that \(1\leq p_{1}\leq p_{2}\leq \ldots\leq p_{N}\) and that \(f\) and \(g\) are non-negative functions belonging to a suitable Lebesgue space \(L^{m}(\Omega)\), \(1\lt q\lt \overline{p}^{\ast}\), \(a\gt 0\), \(b\gt 0\) and \(0\lt\gamma \lt 1.\)
Keywords: anisotropic operator, integro-differential problem, variational methods.
Mathematics Subject Classification: 35A15, 35B09, 35E15, 35J20.
- B. Abdellaoui, A. Attar, S.E. Miri, Nonlinear singular elliptic problem with gradient term and general datum, J. Math. Anal. Appl. 409 (2014), 362-377.
- K.B. Ali, M. Bezzarga, A. Ghanmi, K. Kefi, Existence of positive solution for Kirchhoff problems, Complex Anal. Oper. Theory. 13 (2019), 115-126.
- A. Alsaedi, B. Ahmad, Anisotropic problems with unbalanced growth, Adv. Nonlinear Anal. 9 (2020), 1504-1515.
- C.O. Alves, A. El Hamidi, Existence of solution for a anisotropic equation with critical exponent, Differ. Integral Equ. 21 (2008), 25-40.
- A. Bensedik, On existence results for an anisotropic elliptic equation of Kirchhoff-type by a monotonicity method, Funkc. Ekvacioj. 57 (2014), 489-502.
- L. Boccardo, L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differential Equations 37 (2009), 363-380.
- Y.O. Boukarabila, S.E. Miri, Anisotropic system with singular and regular nonlinearities, Complex Var. Elliptic Equ. 65 (2020), 621-631.
- B. Brandolini, F.C. Cîrstea, Singular anisotropic elliptic equations with gradient-dependent lower order terms, arXiv:2001.02887 (2020).
- L.M. De Cave, Nonlinear elliptic equations with singular nonlinearities, Asymptot. Anal. 84 (2013), 181-195.
- A. Di Castro, Elliptic problems for some anisotropic operators, Ph.D. Thesis, University of Rome "Sapienza", a. y. 2008/2009.
- A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Adv. Nonlin. Stud. 9 (2009), 367-393.
- A. Di Castro, Anisotropic elliptic problems with natural growth terms, Manuscripta Math. 135 (2011), 521-543.
- G.C.G. Dos Santos, G.M. Figueiredo, L.S. Tavares, Existence results for some anisotropic singular problems via sub-supersolutions, Milan J. Math. 87 (2019), 249-272.
- G.C.G. Dos Santos, L.S. Tavares, Existence results for an anisotropic nonlocal problem involving critical and discontinuous nonlinearities, Complex Var. Elliptic Equ. (2020), 1-25.
- G.M. Figueiredo, J.R.S. Júnior, A. Suárez, Multiplicity results for an anisotropic equation with subcritical or critical growth, Adv. Nonlinear Stud. 15 (2015), 377-394.
- A. Fiscella, A fractional Kirchhoff problem involving a singular term and a critical nonlinearity, Adv. Nonlinear Anal. 8 (2019), 645-660.
- I. Fragalà, F. Gazzola, B. Kawohl, Existence and nonexistence results for anisotropic quasilinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 715-734.
- M. Ghergu, V. Radulescu, Singular Elliptic Problems, Oxford Univ. Press, 2008.
- S.N. Kruzhkov, I.M. Kolodii, On the theory of embedding of anisotropic Sobolev spaces, Russian Math. Surveys 38 (1983), 188-189.
- A.R. Leggat, S.E. Miri, Anisotropic problem with singular nonlinearity, Complex Var. Elliptic Equ. 61 (2016), 496-509.
- A.R. Leggat, S.E. Miri, Existence and multiplicity results for a doubly anisotropic problem with sign-changing nonlinearity, Note di Mat. 39 (2019), 1-12.
- C.Y. Lei, J.F. Liao, Multiple positive solutions for Kirchhoff type problems with singularity and asymptotically linear nonlinearities, Appl. Math. Lett. 94 (2019), 279-285.
- Q. Li, W. Gao, Y. Han, Existence of solution for a singular elliptic equation of Kirchhoff type, Mediterr. J. Math. 14 (2017), Article no. 231.
- J.F. Liao, X.F. Ke, C.Y. Lei, C.L. Tang, A uniqueness result for Kirchhoff type problems with singularity, Appl. Math. Lett. 59 (2016), 24-30.
- S.E. Miri, Quasilinear elliptic problems with general growth and nonlinear term having singular behavior, Adv. Nonlinear Stud. 12 (2012), 19-48.
- S.E. Miri, Problemes elliptiques et paraboliques avec terme singulier, Tlemcen University, Doctoral Dissertation, 2015.
- S.E. Miri, On an anisotropic problem with singular nonlinearity having variable exponent, Ric. di Mat. 66 (2017), 415-424.
- S.M. Nikolskii, Imbedding theorems for functions with partial derivatives considered in various metrics, Izd. Akad. Nauk SSSR22 (1958), 321-336.
- N.S. Papageorgiou, V.D. Radulescu, D.D. Repovs, Nonlinear nonhomogeneous singular problems, Calc. Var. Partial Differential Equations 59 (2020), Article no. 59.
- V.D. Radulescu, Isotropic and anisotropic double-phase problems: old and new, Opuscula Math. 39 (2019), 259-279.
- S.H. Rasouli, M. Fani, An existence result for p-Kirchhoff-type problems with singular nonlinearity, Appl. Math. E-Notes 18 (2018), 62-68.
- M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche Mat. 18 (1969), 3-24.
- D. Wang, B. Yan, A uniqueness result for some Kirchhoff-type equations with negative exponents, Appl. Math. Lett. 92 (2019), 93-98.
- Q. Zhang, V.D. Radulescu, V.D. Radulescu, Double phase anisotropic variational problems and combined effects of reaction and absorption terms, J. Math. Pures Appl. 118 (2018), 159-203.
- Rachid Bentifour
https://orcid.org/0000-0003-3177-663X
- Université de Tlemcen, Dépatement GEE, Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, BP 119 Tlemcen, 13000, Algeria
- Sofiane El-Hadi Miri (corresponding author)
https://orcid.org/0000-0001-6572-4366
- Université de Tlemcen, Dépatement GEE, Laboratoire d'Analyse Non Linéaire et Mathématiques Appliquées, BP 119 Tlemcen, 13000, Algeria
- Communicated by Vicentiu D. Radulescu.
- Received: 2020-06-01.
- Revised: 2020-11-23.
- Accepted: 2020-11-24.
- Published online: 2021-02-08.