Opuscula Math. 40, no. 6 (2020), 725-736
https://doi.org/10.7494/OpMath.2020.40.6.725
Opuscula Mathematica
Existence and decay of finite energy solutions for semilinear dissipative wave equations in time-dependent domains
Abstract. We consider the initial-boundary value problem for semilinear dissipative wave equations in noncylindrical domain \(\bigcup_{0\leq t \lt\infty} \Omega(t)\times\{t\} \subset \mathbb{R}^N\times \mathbb{R}\). We are interested in finite energy solution. We derive an exponential decay of the energy in the case \(\Omega(t)\) is bounded in \(\mathbb{R}^N\) and the estimate \[\int\limits_0^{\infty} E(t)dt \leq C(E(0),\|u(0)\|)\lt \infty\] in the case \(\Omega(t)\) is unbounded. Existence and uniqueness of finite energy solution are also proved.
Keywords: energy decay, global existence, semilinear wave equation, noncylindrical domains.
Mathematics Subject Classification: 35B35, 35L70.
- J. Cooper, Local decay of solutions of the wave equation in the exterior of a moving body, J. Math. Anal. Appl. 49 (1975), 130-153.
- M. Ikawa, Mixed problems for hyperbolic equations of second order, J. Math. Soc. Japan 20 (1968), 580-608.
- A. Inoue, Sur \(\Box u+u^3=f\) dans un domaine noncylindrique, J. Math. Anal. Appl. 46 (1974), 777-819.
- O. Ladyzhenskaya, On the solution of some non-stationary operator equations, Math. Sb. 39 (1961), 441-524 [in Russian].
- K. Lee, A mixed problem for hyperbolic equations with time-depenent domain, J. Math. Anal. Appl. 16 (1966), 455-471.
- M. Nakao, Periodic solution of the dissipative wave equation in a time-dependent domain, J. Differential Equations 34 (1979), 393-404.
- Mitsuhiro Nakao
- Faculty of Mathematics, Kyushu University, Moto-oka 744, Fukuoka 819-0395, Japan
- Communicated by Marek Galewski.
- Received: 2020-03-20.
- Revised: 2020-11-07.
- Accepted: 2020-11-07.
- Published online: 2020-12-01.