Opuscula Math. 40, no. 5 (2020), 617-627
https://doi.org/10.7494/OpMath.2020.40.5.617

 
Opuscula Mathematica

On 2-rainbow domination number of functigraph and its complement

Athena Shaminezhad
Ebrahim Vatandoost

Abstract. Let \(G\) be a graph and \(f:V (G)\rightarrow P(\{1,2\})\) be a function where for every vertex \(v\in V(G)\), with \(f(v)=\emptyset\) we have \(\bigcup_{u\in N_{G}(v)} f(u)=\{1,2\}\). Then \(f\) is a \(2\)-rainbow dominating function or a \(2RDF\) of \(G\). The weight of \(f\) is \(\omega(f)=\sum_{v\in V(G)} |f(v)|\). The minimum weight of all \(2\)-rainbow dominating functions is \(2\)-rainbow domination number of \(G\), denoted by \(\gamma_{r2}(G)\). Let \(G_1\) and \(G_2\) be two copies of a graph G with disjoint vertex sets \(V(G_1)\) and \(V(G_2)\), and let \(\sigma\) be a function from \(V(G_1)\) to \(V(G_2)\). We define the functigraph \(C(G,\sigma)\) to be the graph that has the vertex set \(V(C(G,\sigma)) = V(G_1)\cup V(G_2)\), and the edge set \(E(C(G,\sigma)) = E(G_1)\cup E(G_2 \cup \{uv ; u\in V(G_1), v\in V(G_2), v =\sigma(u)\}\). In this paper, \(2\)-rainbow domination number of the functigraph of \(C(G,\sigma)\) and its complement are investigated. We obtain a general bound for \(\gamma_{r2}(C(G,\sigma))\) and we show that this bound is sharp.

Keywords: 2-rainbow domination number, functigraph, complement, cubic graph.

Mathematics Subject Classification: 05C69, 05C75.

Full text (pdf)

  1. H.A. Ahangar, J. Amjadi, S.M. Sheikholeslami, D. Kuziak, Maximal 2-rainbow domination number of a graph, AKCE Int. J. Graphs Comb. 13 (2016) 2, 157-164.
  2. J.D. Alvarado, S. Dantas, D. Rautenbach, Averaging 2-rainbow domination and Roman domination, Discrete Appl. Math. 205 (2016), 202-207.
  3. B. Bresar, M.A. Henning, D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008) 1, 213-225.
  4. B. Bresar, T.K. Sumenjak, On the 2-rainbow domination in graphs, Discrete Appl. Math. 155 (2007) 17, 2349-2400.
  5. G.J. Chang, J. Wu, X. Zhu, Rainbow domination on trees, Discrete Appl. Math. 158 (2010) 1, 8-12.
  6. S. Fujita, M. Furuya, Difference between 2-rainbow domination and Roman domination in graphs, Discrete Appl. Math. 161 (2013) 6, 806-812.
  7. M. Furuya, A note on total domination and 2-rainbow domination in graphs, Discrete Appl. Math. 184 (2015), 229-230.
  8. F. Ramezani, E.D. Rodrguez-Bazan, J.A. Rodrguez-Velazquez, On the Roman domination number of generalized Sierpinski graphs, Filomat 31:20 (2017), 6515-6528.
  9. Z. Shao, H. Jiang, P. Wu, S. Wang, J. Žerovnik, X. Zhang, J.B. Liu, On 2-rainbow domination of generalized Petersen graphs, Discrete Appl. Math. 257 (2019), 370-384.
  10. Z. Stepien, M. Zwierzchowski, 2-rainbow domination number of Cartesian products: \(C_{n}\square C_{3}\) and \(C_ {n}\square C_{5}\), J. Comb. Optim. 28 (2014) 4, 748-755.
  11. T.K. Sumenjak, D.F. Rall, A. Tepeh, On \(k\)-rainbow independent domination in graphs, Appl. Math. Comput. 333 (2018), 353-361.
  12. E. Vatandoost, F. Ramezani, Domination and signed domination number of Cayley graphs, Iran. J. Math. Sci. Inform. 14 (2019) 1, 35-42.
  13. Y. Wang, X. Wu, N. Dehgardi, J. Amjadi, R. Khoeilar, J.B. Liu, \(k\)-rainbow domination number of \(P_{3} \square P_{n}\), Mathematics 7 (2019) 2, 203.
  14. D.B. West, Introduction to Graph Theory, vol. 2, Upper Saddle River, NJ: Prentice Hall, 1996.
  15. Y. Wu, N.J. Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013) 4, 1125-1133.
  16. K.H. Wu, Y.L. Wang, C.C. Hsu, C.C. Shih, On 2-rainbow domination in generalized Petersen graphs, Int. J. Comput. Math. Comput. Syst. Theory 2 (2017) 1, 1-13.
  17. Y. Wu, H. Xing, Note on 2-rainbow domination and Roman domination in graphs, Appl. Math. Lett. 23 (2010) 6, 706-709.
  • Athena Shaminezhad
  • Imam Khomeini International University, Department of Basic Science, Nouroozian Street, Qazvin, Iran
  • Ebrahim Vatandoost (corresponding author)
  • Imam Khomeini International University, Department of Basic Science, Nouroozian Street, Qazvin, Iran
  • Communicated by Dalibor Fronček.
  • Received: 2020-01-06.
  • Revised: 2020-06-04.
  • Accepted: 2020-07-07.
  • Published online: 2020-10-10.
Opuscula Mathematica - cover

Cite this article as:
Athena Shaminezhad, Ebrahim Vatandoost, On 2-rainbow domination number of functigraph and its complement, Opuscula Math. 40, no. 5 (2020), 617-627, https://doi.org/10.7494/OpMath.2020.40.5.617

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.