Opuscula Math. 40, no. 4 (2020), 483-494
https://doi.org/10.7494/OpMath.2020.40.4.483

 
Opuscula Mathematica

Properties of solutions to some weighted p-Laplacian equation

Prashanta Garain

Abstract. In this paper, we prove some qualitative properties for the positive solutions to some degenerate elliptic equation given by \[-\text{div}\big(w|\nabla u|^{p-2}\nabla u\big)=f(x,u),\quad w\in \mathcal{A}_p,\] on smooth domain and for varying nonlinearity \(f\).

Keywords: \(p\)-Laplacian, degenerate elliptic equations, weighted Sobolev space.

Mathematics Subject Classification: 35A01, 35J62, 35J70.

Full text (pdf)

  1. W. Allegretto, Y.X. Huang, A Picone's identity for the \(p\)-Laplacian and applications, Nonlinear Anal. 32 (1998) 7, 819-830.
  2. K. Bal, Generalized Picone's identity and its applications, Electron. J. Differential Equations 2013 (2013) 243, 1-6.
  3. K. Bal, Uniqueness of a positive solution for quasilinear elliptic equations in Heisenberg group, Electron. J. Differential Equations 2016 (2016) 130, 1-7.
  4. K. Bal, P. Garain, I. Mandal, Some qualitative properties of Finsler \(p\)-Laplacian, Indag. Math. (N.S.) 28 (2017) 6, 1258-1264.
  5. M. Belloni, B. Kawohl, A direct uniqueness proof for equations involving the \(p\)-Laplace operator, Manuscripta Math. 109 (2002) 2, 229-231.
  6. S. Chanillo, R.L. Wheeden, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Amer. J. Math. 107 (1985) 5, 1191-1226.
  7. V. De Cicco, M.A. Vivaldi, Weighted Poincaré and Sobolev inequalities and estimates for weighted Peano maximal functions, Adv. Math. Sci. Appl. 9 (1999) 1, 183-207.
  8. P. Drábek, A. Kufner, F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, De Gruyter Series in Nonlinear Analysis and Applications, vol. 5, Walter de Gruyter & Co., Berlin, 1997.
  9. G. Dwivedi, J. Tyagi, Some qualitative questions on the equation \(-\operatorname{div}(a(x,u,\nabla u))=f(x,u)\), J. Math. Anal. Appl. 446 (2017) 1, 456-469.
  10. E.B. Fabes, C.E. Kenig, R.P. Serapioni, The local regularity of solutions of degenerated elliptic equations, Commun. Partial Diff. Eq. 7 (1982) 1, 77-116.
  11. J. Heinonen, T. Kilpelainen, O. Martio, Nonlinear Potential Theory of Degenerate Elliptic Equations, Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.
  12. J. Jaroš, Picone's identity for the \(p\)-biharmonic operator with applications, Electron. J. Differential Equations 2011 (2011) 122, 1-6.
  13. J. Jaroš, Generalized Picone identity and comparison of half-linear differential equations of order 4m, Mem. Differ. Equ. Math. Phys. 57 (2012) 41-50.
  14. J. Jaroš, Picone's identity for a system of first-order nonlinear partial differential equations, Electron. J. Differential Equations 2013 (2013) 143, 1-7.
  15. J. Jaroš, Picone's identity for a Finsler \(p\)-Laplacian and comparison of nonlinear elliptic equations, Math. Bohem. 139 (2014) 3, 535-552.
  16. J. Jaroš, \(A\)-harmonic Picone's identity with applications, Ann. Mat. Pura Appl. (4) 194 (2015) 3, 719-729.
  17. J. Jaroš, Caccioppoli estimates through an anisotropic Picone's identity, Proc. Amer. Math. Soc. 143 (2015) 3, 1137-1144.
  18. J. Jaroš, K. Takaŝi, N. Yoshida, Picone-type inequalities for nonlinear elliptic equations with first-order terms and their applications, J. Inequal. Appl. (2006), 1-17.
  19. B. Kawohl, M. Lucia, S. Prashanth, Simplicity of the principal eigenvalue for indefinite quasilinear problems, Adv. Differential Equations 12 (2007), 407-434.
  20. J. Tyagi, A nonlinear Picone's identity and its applications, Appl. Math. Lett. 26 (2013) 6, 624-626.
  • Communicated by Patrizia Pucci.
  • Received: 2019-06-03.
  • Revised: 2020-03-20.
  • Accepted: 2020-05-18.
  • Published online: 2020-07-09.
Opuscula Mathematica - cover

Cite this article as:
Prashanta Garain, Properties of solutions to some weighted p-Laplacian equation, Opuscula Math. 40, no. 4 (2020), 483-494, https://doi.org/10.7494/OpMath.2020.40.4.483

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.