Opuscula Math. 40, no. 2 (2020), 241-270
https://doi.org/10.7494/OpMath.2020.40.2.241
Opuscula Mathematica
Asymptotic expansion of large eigenvalues for a class of unbounded Jacobi matrices
Ayoub Harrat
El Hassan Zerouali
Lech Zielinski
Abstract. We investigate a class of infinite tridiagonal matrices which define unbounded self-adjoint operators with discrete spectrum. Our purpose is to establish the asymptotic expansion of large eigenvalues and to compute two correction terms explicitly.
Keywords: tridiagonal matrix, band matrix, unbounded self-adjoint operator, discrete spectrum, large eigenvalues, asymptotics.
Mathematics Subject Classification: 47B25, 47B36, 15A18.
- A. Boutet de Monvel, L. Zielinski, Explicit error estimates for eigenvalues of some unbounded Jacobi matrices, Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations: IWOTA10, Oper. Theory Adv. Appl., vol. 221, Birkhäuser Verlag, Basel, 2012, pp. 187-215.
- A. Boutet de Monvel, L. Zielinski, Asymptotic behaviour of large eigenvalues of a modified Jaynes-Cummings model, [in:] E. Khruslov, L. Pastur, D. Shepelsky (eds), Spectral Theory and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, vol. 233, Providence, RI, 2014, pp. 77-93.
- A. Boutet de Monvel, L. Zielinski, Asymptotic behaviour of large eigenvalues for Jaynes-Cummings type models, J. Spectr. Theory 7 (2017), 1-73.
- A. Boutet de Monvel, L. Zielinski, Oscillatory behavior of large eigenvalues in quantum Rabi models, International Mathematics Research Notices, doi.org/10.1093/imrn/rny294, (2019), see also arXiv:1711.03366. https://doi.org/10.1093/imrn/rny294
- A. Boutet de Monvel, L. Zielinski, On the spectrum of the quantum Rabi Models, Operator Theory: Advances and Applications, Birkhäuser, to appear.
- A. Boutet de Monvel, J. Janas, L. Zielinski, Asymptotics of large eigenvalues for a class of band matrices, Reviews in Mathematical Physics 25 (2013) 8, 1350013.
- A. Boutet de Monvel, S. Naboko, L.O. Silva, The asymptotic behaviour of eigenvalues of a modified Jaynes-Cummings model, Asymptot. Anal. 47 (2006) 3-4, 291-315.
- P.A. Cojuhari, J. Janas, Discreteness of the spectrum for some unbounded Jacobi matrices, Acta Sci. Math. (Szeged) 73 (2007) 3-4, 649-667.
- P. Djakov, B. Mityagin, Simple and double eigenvalues of the Hill operator with a two term potential, J. Approximation Theory 135 (2005) 1, 70-104.
- P. Djakov, B. Mityagin, Trace formula and spectral Riemann surfaces for a class of tri-diagonal matrices, J. Approximation Theory 139 (2006), 293-326.
- J. Edward, Spectra of Jacobi matrices, differential equations on the circle, and the su(1,1) Lie algebra, SIAM J. Math. Anal. 24 (2006) 3, 824-831.
- W.G. Faris, R.B. Lavine, Commutators and self-adjointness of Hamiltonian operators, Commun. Math. Phys. 35 (1974), 39-48.
- J. Janas, M. Malejki, Alternative approaches to asymptotic behaviour of eigenvalues of some unbounded Jacobi matrices, Comput. Appl. Math. 200 (2007), 342-356.
- J. Janas, S. Naboko, Infinite Jacobi matrices with unbounded entries: asymptotics of eigenvalues and the transformation operator approach, SIAM J. Math. Anal. 36 (2004) 2, 643-658.
- M. Malejki, Asymptotics of large eigenvalues for some discrete unbounded Jacobi matrices, Linear Algebra Appl. 431 (2009) 10, 1952-1970.
- M. Malejki, Asymptotics of the discrete spectrum for complex Jacobi matrices, Opuscula Math. 34 (2014) 1, 139-160.
- D. Masson, J. Repka, Spectral theory of Jacobi matrices in \(l^2(\mathbb{Z})\) the su(1,1) Lie algebra, SIAM J. Math. Anal. 22 (1991), 1131-1146.
- G.V. Rozenbljum, Near-similarity of operators and the spectral asymptotic behaviour of pseudodifferential operators on the circle, Trudy Maskov. Mat. Obshch 36 (1978), 59-84 [in Russian].
- G. Teschl, Jacobi Operators and Completely Integrable Nonlinear Lattices, Mathematical Surveys and Monographs, vol. 72, American Mathematical Society, Providence, RI, 2000.
- È.A. Tur, Jaynes-Cummings model: solution without rotating wave approximation, Optics and Spectroscopy 89 (2000) 4, 574-588.
- È.A. Tur, Jaynes-Cummings model without rotating wave approximation, arXiv:math-ph/0211055v1 (2002).
- È.A. Yanovich, Asymptotics of eigenvalues of an energy operator in a problem of quantum physics, [in:] J. Janas, P. Kurasov, A. Laptev, S. Naboko (eds), Operator Methods in Mathematical Physics OTAMP 2010, Bedlewo, Oper. Theory Adv. Appl. 227 (2013), 165-177.
- H. Volkmer, Error estimates for Rayleigh-Ritz approximations of eigenvalues and eigenfunctions of the Mathieu and spheroidal wave equation, Constr. Approx. 20 (2004) 1, 39-54.
- Ayoub Harrat
https://orcid.org/0000-0003-4029-4827
- Center of Mathematical Research of Rabat, Department of Mathematics, Mohammed V University of Rabat, P.O. Box 1014, Marocco
- Laboratoire de Mathématiques Pures et Appliquées, Joseph Liouville EA 2597, Université du Littoral Côtte d'Opale, F-62228 Calais, France
- El Hassan Zerouali
https://orcid.org/0000-0001-6240-7859
- Center of Mathematical Research of Rabat, Department of Mathematics, Mohammed V University of Rabat, P.O. Box 1014, Marocco
- Lech Zielinski (corresponding author)
https://orcid.org/0000-0002-7314-7586
- Laboratoire de Mathématiques Pures et Appliquées, Joseph Liouville EA 2597, Université du Littoral Côtte d'Opale, F-62228 Calais, France
- Communicated by P.A. Cojuhari.
- Received: 2020-01-13.
- Revised: 2020-01-27.
- Accepted: 2020-01-27.
- Published online: 2020-03-09.