Opuscula Math. 39, no. 5 (2019), 691-703
https://doi.org/10.7494/OpMath.2019.39.5.691

 
Opuscula Mathematica

On edge product cordial graphs

Jaroslav Ivančo

Abstract. An edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize graphs admitting an edge product cordial labeling. Using this characterization we investigate the edge product cordiality of broad classes of graphs, namely, dense graphs, dense bipartite graphs, connected regular graphs, unions of some graphs, direct products of some bipartite graphs, joins of some graphs, maximal \(k\)-degenerate and related graphs, product cordial graphs.

Keywords: edge product cordial labelings, dense graphs, regular graphs.

Mathematics Subject Classification: 05C78.

Full text (pdf)

  1. M. Borowiecki, I. Broere, M. Frick, P. Mihók, G. Semanišin, A survey of hereditary properties of graphs, Discuss. Math. Graph Theory 17 (1997), 5-50.
  2. I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201-207.
  3. T. Gallai, Über extreme Punkt- und Kantenmengen, Ann. Univ. Sci. Budapest, Eötvös Sect. Math. 2 (1959), 133-138.
  4. J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin. (2016), #DS6.
  5. J. Ivančo, On \(k\)-total edge product cordial graphs, Australas. J. Combin. 67 (2017), 476-485.
  6. D.R. Lick, A.R. White, \(k\)-degenerate graphs, Can. J. Math. 22 (1970), 1082-1096.
  7. J. Mitchem, Maximal \(k\)-degenerate graphs, Util. Math. 11 (1977), 101-106.
  8. U.M. Prajapati, N.B. Patel, Edge product cordial labeling of some cycle related graphs, Open J. Discrete Math. 6 (2016), 268-278.
  9. U.M. Prajapati, P.D. Shah, Some edge product cordial graphs in the context of duplication of some graphs elements, Open J. Discrete Math. 6 (2016), 248-258.
  10. M. Sundaran, R. Ponraj, S. Somasundaram, Product cordial labeling of graphs, Bull. Pure and Appl. Sci., Sect. E, Math. Stat. 23 (2004), 155-163.
  11. S.K. Vaidya, C.M. Barasara, Edge product cordial labeling of graphs, J. Math. Comput. Sci. 2 (2012), 1436-1450.
  12. S.K. Vaidya, C.M. Barasara, Some edge product cordial graphs, Inter. J. Math. Soft Comput. 3 (2013), 49-53.
  13. S.K. Vaidya, C.M. Barasara, Some new families of edge product cordial graphs, Adv. Model. Optim. 15 (2013), 103-111.
  14. S.K. Vaidya, C.M. Barasara, Edge product cordial labeling in the context of some graph operations, Internat. J. Math. Scientific Comput. 3 (2013), 4-7.
  15. S.K. Vaidya, C.M. Barasara, Total edge product cordial labeling of graphs, Malaya J. Mathematik 3 (2013) 2, 55-63.
  16. S.K. Vaidya, C.M. Barasara, On edge product cordial labeling of some product related graphs, Internat. J. Math. Appl. 2 (2014), 15-22.
  17. S.K. Vaidya, C.M. Barasara, Product and edge product cordial labeling of degree splitting graph of some graphs, Adv. Appl. Discrete Math. 15 (2015), 61-74.
  • Jaroslav Ivančo
  • P.J. Šafárik University, Institute of Mathematics, Jesenná 5, 041 54 Košice, Slovakia
  • Communicated by Adam Paweł Wojda.
  • Received: 2018-04-17.
  • Revised: 2019-05-13.
  • Accepted: 2019-05-30.
  • Published online: 2019-09-05.
Opuscula Mathematica - cover

Cite this article as:
Jaroslav Ivančo, On edge product cordial graphs, Opuscula Math. 39, no. 5 (2019), 691-703, https://doi.org/10.7494/OpMath.2019.39.5.691

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.