Opuscula Math. 39, no. 5 (2019), 611-621

Opuscula Mathematica

On the imaginary part of coupling resonance points

Nurulla Azamov
Tom Daniels

Abstract. We prove for rank one perturbations that the imaginary part of a coupling resonance point is inversely proportional by a factor of \(-2\) to the rate of change of the scattering phase, as a function of the coupling variable, evaluated at the real part of the resonance point. This equality is analogous to the Breit-Wigner formula from quantum scattering theory. For more general relatively trace class perturbations, we also give a formula for the spectral shift function in terms of coupling resonance points, non-real and real.

Keywords: scattering matrix, scattering phase, resonance point, Breit-Wigner formula.

Mathematics Subject Classification: 47A40, 47A55, 47A70.

Full text (pdf)

  1. M. Aizenman, S. Warzel, Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Grad. Stud. Math., AMS, 2015.
  2. M.F. Atiyah, V.K. Patodi, I.M. Singer, Spectral asymmetry and Riemannian geometry I-III, Math. Proc. Camb. Phil. Soc. 77-79 (1975-1976).
  3. N.A. Azamov, Absolutely continuous and singular spectral shift functions, Dissertationes Math. 480 (2011), 1-102.
  4. N.A. Azamov, Spectral flow inside essential spectrum, Dissertationes Math. 518 (2016), 1-156.
  5. N.A. Azamov, Spectral flow and resonance index, Dissertationes Math. 528 (2017), 1-91.
  6. N.A. Azamov, A.L. Carey, F.A. Sukochev, The spectral shift function and spectral flow, Commun. Math. Phys. 276 (2007) 1, 51-91.
  7. N.A. Azamov, T.W. Daniels, Singular spectral shift function for resolvent comparable operators, Math. Nachr. (2019), early online publication; https://doi.org/10.1002/mana.201700293.
  8. M.Sh. Birman, M.G. Kreĭn, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), 475-478 [in Russian].
  9. M.Sh. Birman, M.Z. Solomyak, Remarks on the spectral shift function, J. Soviet Math. 3 (1975) 4, 408-419.
  10. M.Sh. Birman, D.R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4 (1993) 5, 833-870.
  11. A. Bohm, Quantum Mechanics: Foundations and Applications, Second Edition, Texts and Monographs in Physics, Springer, 1986.
  12. V. Bruneau, V. Petkov, Analytic continuation of the spectral shift function, Duke Math. J. 116 (2003) 3, 389-430.
  13. S. Dyaltov, M. Zworski, Mathematical theory of scattering resonances, book in preparation; http://math.mit.edu/~dyatlov/res/.
  14. E. Getzler, The odd Chern character in cyclic homology and spectral flow, Topology 32 (1993), 489-507.
  15. I.C. Gohberg, M.G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., AMS, 1969.
  16. I. Herbst, J. Rama, Instability of pre-existing resonances under a small constant electric field, Ann. Henri Poincaré 16 (2015) 12, 2783-2835.
  17. A. Jensen, K. Yajima, Instability of resonances under Stark perturbations, Ann. Henri Poincaré (2018), to appear.
  18. M.G. Kreĭn, On the trace formula in perturbation theory, Mat. Sb. 33 (1953), 597-626 [in Russian].
  19. J. Phillips, Self-adjoint Fredholm operators and spectral flow, Canad. Math. Bull. 39 (1996), 460-467.
  20. B. Simon, Trace Ideals and Their Applications, 2nd ed., Math. Surveys Monogr., AMS, 2005.
  21. J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover Books on Engineering, Dover, 1972.
  22. D.R. Yafaev, Mathematical Scattering Theory: General Theory, Trans. Math. Monographs 105, AMS, 1992.
  23. M. Zworski, Mathematical study of scattering resonances, Bull. Math. Sci.7 (2017) 1, 1-85.
  • Communicated by P.A. Cojuhari.
  • Received: 2019-05-30.
  • Accepted: 2019-06-17.
  • Published online: 2019-09-05.
Opuscula Mathematica - cover

Cite this article as:
Nurulla Azamov, Tom Daniels, On the imaginary part of coupling resonance points, Opuscula Math. 39, no. 5 (2019), 611-621, https://doi.org/10.7494/OpMath.2019.39.5.611

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.