Opuscula Math. 39, no. 5 (2019), 611-621
https://doi.org/10.7494/OpMath.2019.39.5.611
Opuscula Mathematica
On the imaginary part of coupling resonance points
Abstract. We prove for rank one perturbations that the imaginary part of a coupling resonance point is inversely proportional by a factor of \(-2\) to the rate of change of the scattering phase, as a function of the coupling variable, evaluated at the real part of the resonance point. This equality is analogous to the Breit-Wigner formula from quantum scattering theory. For more general relatively trace class perturbations, we also give a formula for the spectral shift function in terms of coupling resonance points, non-real and real.
Keywords: scattering matrix, scattering phase, resonance point, Breit-Wigner formula.
Mathematics Subject Classification: 47A40, 47A55, 47A70.
- M. Aizenman, S. Warzel, Random Operators: Disorder Effects on Quantum Spectra and Dynamics, Grad. Stud. Math., AMS, 2015.
- M.F. Atiyah, V.K. Patodi, I.M. Singer, Spectral asymmetry and Riemannian geometry I-III, Math. Proc. Camb. Phil. Soc. 77-79 (1975-1976).
- N.A. Azamov, Absolutely continuous and singular spectral shift functions, Dissertationes Math. 480 (2011), 1-102.
- N.A. Azamov, Spectral flow inside essential spectrum, Dissertationes Math. 518 (2016), 1-156.
- N.A. Azamov, Spectral flow and resonance index, Dissertationes Math. 528 (2017), 1-91.
- N.A. Azamov, A.L. Carey, F.A. Sukochev, The spectral shift function and spectral flow, Commun. Math. Phys. 276 (2007) 1, 51-91.
- N.A. Azamov, T.W. Daniels, Singular spectral shift function for resolvent comparable operators, Math. Nachr. (2019), early online publication; https://doi.org/10.1002/mana.201700293
- M.Sh. Birman, M.G. Kreĭn, On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR 144 (1962), 475-478 [in Russian].
- M.Sh. Birman, M.Z. Solomyak, Remarks on the spectral shift function, J. Soviet Math. 3 (1975) 4, 408-419.
- M.Sh. Birman, D.R. Yafaev, The spectral shift function. The work of M. G. Krein and its further development, St. Petersburg Math. J. 4 (1993) 5, 833-870.
- A. Bohm, Quantum Mechanics: Foundations and Applications, Second Edition, Texts and Monographs in Physics, Springer, 1986.
- V. Bruneau, V. Petkov, Analytic continuation of the spectral shift function, Duke Math. J. 116 (2003) 3, 389-430.
- S. Dyaltov, M. Zworski, Mathematical theory of scattering resonances, book in preparation; http://math.mit.edu/~dyatlov/res/
- E. Getzler, The odd Chern character in cyclic homology and spectral flow, Topology 32 (1993), 489-507.
- I.C. Gohberg, M.G. Kreĭn, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monogr., AMS, 1969.
- I. Herbst, J. Rama, Instability of pre-existing resonances under a small constant electric field, Ann. Henri Poincaré 16 (2015) 12, 2783-2835.
- A. Jensen, K. Yajima, Instability of resonances under Stark perturbations, Ann. Henri Poincaré (2018), to appear.
- M.G. Kreĭn, On the trace formula in perturbation theory, Mat. Sb. 33 (1953), 597-626 [in Russian].
- J. Phillips, Self-adjoint Fredholm operators and spectral flow, Canad. Math. Bull. 39 (1996), 460-467.
- B. Simon, Trace Ideals and Their Applications, 2nd ed., Math. Surveys Monogr., AMS, 2005.
- J.R. Taylor, Scattering Theory: The Quantum Theory of Nonrelativistic Collisions, Dover Books on Engineering, Dover, 1972.
- D.R. Yafaev, Mathematical Scattering Theory: General Theory, Trans. Math. Monographs 105, AMS, 1992.
- M. Zworski, Mathematical study of scattering resonances, Bull. Math. Sci.7 (2017) 1, 1-85.
- Nurulla Azamov
https://orcid.org/0000-0002-5700-4980
- Flinders University, College of Science and Engineering, South Rd, Tonsley, SA 5042 Australia
- Tom Daniels
https://orcid.org/0000-0002-3930-9692
- Flinders University, College of Science and Engineering, South Rd, Tonsley, SA 5042 Australia
- Communicated by P.A. Cojuhari.
- Received: 2019-05-30.
- Accepted: 2019-06-17.
- Published online: 2019-09-05.