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Abstract. We prove for rank one perturbations that the imaginary part of a coupling
resonance point is inversely proportional by a factor of −2 to the rate of change of the scattering
phase, as a function of the coupling variable, evaluated at the real part of the resonance point.
This equality is analogous to the Breit–Wigner formula from quantum scattering theory. For
more general relatively trace class perturbations, we also give a formula for the spectral shift
function in terms of coupling resonance points, non-real and real.
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1. INTRODUCTION

By a coupling resonance point we mean a pole of the scattering matrix S(z;Hr, H0),
where Hr = H0 + rV, as a function of the coupling variable r for a fixed (complex)
value of energy z. More precisely, given a self-adjoint operator H0 and a relatively
compact self-adjoint operator V, a coupling resonance point rz of the triple (z;H0, V )
is defined as a pole of the meromorphic operator valued function

r 7→ Rz(Hr) = Rz(H0)(1 + rV Rz(H0))−1,

where Hr = H0 + rV and Rz(H) = (H − z)−1. This function is meromorphic by
the analytic Fredholm theorem (see e.g. [22, Theorem 1.8.2]) and rz is resonant iff
−r−1

z is an eigenvalue of the compact operator V Rz(H0). Coupling resonance points,
when considered as functions of z, are branches of multivalued analytic functions (of
Herglotz type).

Before continuing, a few words of context are worthwhile. The above definition is
different from the usual definition of a resonance point (as e.g. in [12,13,16,17,23])
which comes from the physics literature, as a pole of the analytic continuation –
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through the essential spectrum – of the scattering matrix, or, which is the same, of
the sandwiched resolvent, considered as a function of energy. For clarity, we will call
these energy poles of the scattering matrix energy resonance points.

Although energy resonances are not within the scope of this paper, we note
that there is a simple connection between coupling and energy resonances, namely,
the zeros of the analytic continuation of coupling resonance points rz (considered as
functions of z) are energy resonance points.

In order for analytic continuation through the essential spectrum to be possible the
Hamiltonian H0 is to obey certain strict conditions, usual for the smooth approach
to scattering theory, such as Kato smoothness (for a definition see e.g. [22]), or is to
belong to a class of differential operators with smooth coefficients. On the other hand,
the definition of coupling resonances does not require any smoothness assumptions.
This allows us to consider an arbitrary initial self-adjoint operator H0 and conditions
under which the energy resonances are unlikely to exist.

The reason for our interest in coupling resonance points is that those which, as
Im z → 0, have limit values lying on the real axis, are closely connected to the intriguing
phenomenon of the flow of singular spectrum inside the essential spectrum.

Briefly, the notion of the flow of discrete spectrum, often called spectral flow, which
has been studied by many (e.g. [2, 6, 14, 19]) with a focus on its topological invariance,
is usually not defined in a way that allows its extension to the essential spectrum. On
the other hand, the spectral shift function (SSF) is defined on the entire real axis (see
e.g. [10, 18]). Outside of the essential spectrum, the SSF coincides with spectral flow
and is naturally integer-valued. Whereas within the essential spectrum, its values take
into account the movement, or rather phase shift, of absolutely continuous spectrum
and can be any real number. More detail is provided by the absolutely continuous
ξ(a)(λ;H1, H0) and singular ξ(s)(λ;H1, H0) parts of the SSF (see e.g. [3,7]), which can
be defined (assuming the perturbation is of relatively trace class type) by

ξ#(ϕ;H1, H0) =
1∫

0

Tr
(
E#
r (suppϕ)V ϕ(Hr)

)
dr, ϕ ∈ Cc(R), (1.1)

where the placeholder # should be replaced by (a) or (s) respectively, in which case E(a)
r

and E(s)
r denote the absolutely continuous and singular parts of the spectral measure Er

corresponding to the self-adjoint operatorHr. More precisely, (1.1) defines an absolutely
continuous measure whose density function is, by definition, ξ#(λ;H1, H0). The SSF
ξ(λ;H1, H0) itself can be defined in the same way by the Birman–Solomyak formula
([9]), which is obtained by removing # altogether from (1.1).

It turns out that the singular SSF is a.e. integer-valued and can be relatively simply
described in terms of coupling resonance points by the total resonance index (see
[7, Theorem 1.3], [4, Theorem 6.3.2])

ξ(s)(λ;H1, H0) =
∑

rλ∈[0,1]

indres(λ;Hrλ , V ), (1.2)
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where the resonance index indres(λ;Hrλ , V ) is defined as the difference N+−N−, with
N± being the number of coupling resonance points corresponding to (λ+ iy,H0, V )
which converge to rλ ∈ R from the half-plane C± as y → 0+. Only a finite number of
resonance indices for rλ ∈ [0, 1] can be non-zero and the total resonance index is their
sum. More information about the resonance index and its interpretation can be found
e.g. in [4, 5].

Various similar notions to coupling resonances can be found in the literature
(e.g. Regge poles, dilation analytic resonances), but the similarities are for our purposes
largely superficial. To a limited extent coupling resonances do however appear in the lit-
erature, in connection with rank-one perturbations and Weylm-functions (see e.g. [20]),
and in connection with random Schrödinger operators (see e.g. [1, Theorem 5.3]) which
do not necessarily obey the smoothness conditions to allow energy resonances. We note
that there is a sense in which embedded singular spectrum belongs to things such as
random Schrödinger operators rather than to Schrödinger operators with decreasing
potentials.

Another point of difference with the existing literature [10, 12] is that we work
with derivatives of the scattering matrix with respect to the coupling variable, not with
respect to energy. This can be seen as another aspect of the same point as above:
we focus on the coupling variable instead of energy. Since the scattering matrix
S(λ;Hr, H0) is normally defined for a fixed pair of operators H0, Hr and a.e. real value
z = λ+ i0 of energy, a rigorous justification of this change of viewpoint requires careful
treatment of the null set of exceptional real energy values λ and their dependence
on r. For this reason we rely on the constructive approach to scattering theory found
in [3, 4, 7] which was developed for this purpose.

Under certain conditions on the pair (H0, V ), which ensure the existence of scatter-
ing theory (namely the limiting absorption principle, see e.g. [22, Chapter 6]), coupling
resonance points rz have limit values rλ+i0 for a.e. λ ∈ R. When rλ+i0 is real, it has
several interpretations, as discussed in detail in the introduction of [4]. One such
interpretation is that one of the scattering phases θj(λ; r) of the scattering matrix
S(λ;Hr, H0) (by which we mean that eiθj(λ;r) is an eigenvalue of S(λ;Hr, H0)), when
considered as an analytic function of the coupling variable r, suffers a sudden jump by
an integer multiple of 2π when r crosses rλ+i0 (in fact such a jump is only revealed
when λ is perturbed slightly to λ+ iε).

After having concentrated on the case rλ+i0 ∈ R, this paper originated from
a curiosity about what happens if the imaginary part is non-zero. It turns out that
it has a meaning in the spirit of the Breit-Wigner formula from quantum scattering
theory, which concerns the situation of an energy resonance near the real axis (see
e.g. [11, Chapter XVIII], [21, Chapter 13]). In this paper for rank-one perturbations, in
which case there is only one non-zero scattering phase θ1(λ; r), we prove the formula:

∂θ1(λ; r)
∂r

∣∣∣
r=Re rλ+i0

= − 2
Im rλ+i0

, a.e. λ ∈ R. (1.3)

Since rλ+i0 is a pole of the scattering matrix, this formula is in agreement with the
Breit–Wigner formula, with the difference that the phase is considered as a function
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of the coupling variable instead of energy. The proof turns out to be surprisingly
simple and is based on an elementary fact:

eiθ(r) = 1− r/(α− iβ)
1− r/(α+ iβ) =⇒ dθ(r)

dr

∣∣∣
r=α

= − 2
β
.

Also established here is a more general formula (see Theorem 2.2), which applies
in the case that V is a certain kind of relatively trace class perturbation. This allows
us to present a new formula for the SSF purely in terms of coupling resonance points:

ξ(λ;H1, H0) = 1
2π

1∫

0

∞∑

j=1

2βjλ
|r − αjλ|2 + |βjλ|2

dr +
∑

rλ∈[0,1]

indres(λ;Hrλ , V ), (1.4)

where rjλ+i0 = αjλ + iβjλ are the limits of coupling resonance points with non-zero βjλ.
For comparison, we note that a similar formula in terms of the energy variable can

be found in [12, (1.3)], which is anologous to the derivative of (1.4) with respect to
the coupling variable. Some other analogous considerations in terms of energy appear
in [10, §9.3] along with further references.

Throughout the rest of the paper, since we will only be concerned with coupling
resonance points, we refer to them simply as by resonance points, leaving “coupling”
implicit.

2. RESULTS

Theorem 2.1. If H0 is a self-adjoint operator and V is a rank one self-adjoint
operator, then for a.e. λ ∈ R the formula (1.3) holds. In this formula, for z outside
the essential spectrum of H0, the number rz is the unique pole of the meromorphic
function C 3 s 7→ V Rz(Hs) with rλ+i0 = limy→0+ rλ+iy, and eiθ1(λ;r) is the unique
non-trivial eigenvalue of the scattering matrix S(λ;Hr, H0).

Before proceeding to the proof we discuss its context and sketch an important
lemma whose details lie outside the scope of this paper. Since V has rank one, the
default premise of this theorem – the limiting absorption principle – holds; this is
necessary for the existence of the scattering matrix and therefore also the scattering
phase. Because the proof involves considering these objects as functions of the coupling
variable, it requires the constructive approach to stationary scattering theory given
in [3, 7] and outlined in the introduction to [4]. In this approach, objects such as
the wave matrices w±(λ;Hr, H0) and scattering matrix S(λ;Hr, H0) are defined by
explicit formulas for all r except a discrete set, as long as λ belongs to a pre-defined
set of full Lebesgue measure in R, which comes from the limiting absorption principle.
Moreover, the scattering matrix can be differentiated with respect to r, as discussed
further below.
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The setting for the proof of Theorem 2.1 and its generalisation Theorem 2.2 is
outlined by the following assumptions which are common within scattering theory.

(1) H0 is a self-adjoint operator on a (separable complex) Hilbert space H.
(2) V is a symmetric form on H, which admits the decomposition V = F ∗JF

on the form domain of H0, i.e.

V : (f, g) 7→ 〈Ff, JFg〉 , f, g ∈ dom |H0|1/2,

where F : H → K is a closed operator and J is a self-adjoint bounded operator
on K.

(3) The sandwiched resolvent Tz(H0) = FRz(H0)F ∗, where Rz(H) = (H − z)−1 is
the resolvent of H, is (or more precisely extends to) a compact operator for some
(and thus for any) z /∈ σ(H0), the spectrum of H0.

(4) F is bounded or H0 is semi-bounded.

Without loss of generality we assume that F has trivial kernel (by extending to
the kernel as a compact operator) and that F dom |H0|1/2 is dense in K. Given
conditions (1), (2), and (4), condition (3) is equivalent to the relative compactness of
F with respect to |H0|1/2.

These conditions (1)–(4) imply that the perturbed operator Hr := H0 + rV, r ∈ R,
is well-defined, as an operator-sum if F is bounded or a form-sum if H0 is semi-bounded.
In fact we will need the following strengthened version of condition (3).

(3′) The sandwiched resolvent Tz(H0) = FRz(H0)F ∗ is (extends to) a trace class
operator for some (and thus any) z /∈ σ(H0).

Given (3′), it follows from the second resolvent identity that Tz(Hr) also belongs to the
trace class for any r ∈ R and z ∈ C \R. This condition implies the limiting absorption
principle in the following sense: the set of points λ ∈ R for which the uniform limit
Tλ+i0(Hr) := limy→0+ Tλ+iy(Hr) exists, has full Lebesgue measure in R. In addition,
the limit of the imaginary part ImTλ+i0(Hr) = limy→0+ ImTz(Hr) exists in the trace
class norm for a.e. λ ∈ R. The full set of points λ for which both of these limits exist
will be denoted by Λ(Hr, F ). Note that the limit of the real part of Tλ+i0(Hr) may
not exist in the trace-class, even if F is Hilbert–Schmidt.

If V is an operator which is relatively compact with respect to H0, then F =
√
|V |

and J = sgnV satisfy the conditions (1)–(3). In this case for z ∈ C \ R, the compact
operators V Rz(H0) and JTz(H0) share the same non-zero eigenvalues. It follows that
(coupling) resonance points rz corresponding to z can be defined as poles of the
meromorphic function

r 7→ Tz(Hr) = Tz(H0)(1 + rJTz(H0))−1,

extending the definition given above. This definition also makes sense for z = λ+ i0
provided λ belongs to Λ(H0, F ). What’s more, for λ ∈ Λ(H0, F ), it happens that
λ ∈ Λ(Hr, F ) if and only if r ∈ R is non-resonant at λ.
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Note that if V is finite-rank, then so can be the choice of F (before extending to
the kernel as a Hilbert-Schmidt operator), hence in this case conditions (3′) and (4)
are satisfied. More generally, condition (3′) will be satisfied if the (necessarily bounded)
operator F (|H0|1/2 + 1)−1 belongs to the Hilbert–Schmidt class.

We now briefly review how the scattering matrix can be realised as a function
of the coupling variable by taking a constructive approach to stationary scattering
theory (for more information see e.g. [7] or the introduction to [4]). A fibre Hilbert
space hλ(H0) is defined for any λ ∈ Λ(H0, F ) as the closed range

hλ(H0) = cl
(

ran
√

ImTλ+i0(H0)
)
⊂ K.

These fibre Hilbert spaces give rise to a direct integral

H(H0) :=
⊕∫

Λ(H0,F )

hλ(H0) dλ

=
{
f ∈ L2(Λ(H0, F ),K) : f(λ) ∈ hλ(H0) for a.e. λ ∈ Λ(H0, F )

}
.

The evaluation operator Eλ(H0) is defined on the range of F ∗ by

Eλ(H0) =
√
π−1 ImTλ+i0(H0)(F ∗)−1

and the collection E(H0) = {Eλ(H0) : λ ∈ Λ(H0, F )}, considered as an operator
from H to H(H0) defined on ranF ∗, extends to a partial isometry which diagonalises
the absolutely continuous part of H0 ([7, Theorem 5.1], [3, Theorem 3.4.2]):

E(H0) : H → H(H0), H
(a)
0 = E∗(H0)MλE(H0),

whereMλ denotes the operator of multiplication by λ. For any non-resonant r, the wave
matrices w±(λ;Hr, H0) may then be defined as unitary transforms from hλ(H0) to
hλ(Hr), which are uniquely determined for f, g ∈ ranF ∗ by

〈Eλ(Hr)f, w±(λ;Hr, H0)Eλ(H0)g〉 = lim
y→0+

y

π
〈Rλ+iy(Hr)f,Rλ+iy(H0)g〉 .

The scattering matrix S(λ;Hr, H0) = w∗+(λ;Hr, H0)w−(λ;Hr, H0) can be shown to
satisfy the stationary formula

S(λ;Hr, H0) = 1− 2ir
√

ImTλ+i0(H0)J(1 + rTλ+i0(H0)J)−1√ImTλ+i0(H0), (2.1)

for any λ ∈ Λ(H0, F ) and non-resonant r ∈ R. This allows the scattering matrix, for
fixed such λ, to be considered as a function of r. Although its factor (1+rTλ+i0(H0)J)−1

is meromorphic with poles at resonance points, since the scattering matrix is uni-
tary and hence bounded for non-resonant r ∈ R, it admits analytic continuation to
a neighbourhood of the real axis.
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A significant part of the proof of Theorem 2.1 (see [7, Theorem 5.7], [3, Theo-
rem 7.3.3]) is the following fact, obtained from (2.1). The derivative of the scattering
matrix at any non-resonant r ∈ R is given by

dS(λ;Hr, H0)
dr

= −2i w+(λ;H0, Hr)
√

ImTλ+i0(Hr)J
√

ImTλ+i0(Hr)
× w+(λ;Hr, H0)S(λ;Hr, H0).

(2.2)

Assuming condition (3′), this derivative can be taken in the trace class norm.

Proof of Theorem 2.1. Let λ be a real number from the full set Λ(H0, F ). Since λ is
fixed, we write S(r) for S(λ;Hr, H0) and θj(r) for θj(λ; r). Since the scattering matrix
is unitary, it follows from (2.2) that for any non-resonant r ∈ R,

S′(r)S−1(r) = −2i w+(λ;H0, Hr)
√

ImTλ+i0(Hr)J
√

ImTλ+i0(Hr)w+(λ;Hr, H0).
(2.3)

Further, since w+(λ;Hr, H0)w+(λ;H0, Hr) = 1hλ(Hr) (see [7, Theorem 5.3], [3, Corol-
lary 5.3.8]), taking traces of both sides of the equality (2.3) gives

Tr
(
S′(r)S−1(r)

)
= −2iTr

(√
ImTλ+i0(Hr)J

√
ImTλ+i0(Hr)

)
. (2.4)

The trace on the right can be interpreted to be associated to the trace class
operators on the whole space K, rather than the fibre Hilbert space hλ(Hr), since
ker
√

ImTλ+i0(Hr) = hλ(Hr)⊥. It follows using condition (3′) that the equality (2.4)
can be rewritten as

Tr
(
S′(r)S−1(r)

)
= −2iTr (J ImTλ+i0(Hr))
= − lim

y→0+
2iTr (J ImTλ+iy(Hr))

= − lim
y→0+

Tr (JTλ+iy(Hr))− Tr (JTλ−iy(Hr)) . (2.5)

We recall that a resonance point rz corresponding to the triple (z;H0, V ) is a complex
number such that −r−1

z is an eigenvalue of the compact operator JTz(H0), or in this
case equivalently of V Rz(H0). Since by the premise V has rank 1, the operator V Rz(Hr)
has only one eigenvalue. Therefore, with z = λ+ iy and using the fact that r̄z = rz̄,
we find that

Tr
(
S′(r)S−1(r)

)
= − lim

y→0+

(
(r − rz)−1 − (r − r̄z)−1)

= − lim
y→0+

−r̄z + rz
(r − rz)(r − r̄z)

= − lim
y→0+

2i Im rz
(r − rz)(r − r̄z)

.

Taking the limit and replacing r by Re rλ+i0 (assuming it is not resonant,
i.e. Im rλ+i0 6= 0),

Tr
(
S′(r)S−1(r)

) ∣∣
r=Re rλ+i0

= − 2i
Im rλ+i0

.
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On the other hand, since rank(V ) = 1, the scattering matrix S(r) is one-dimensional.
Hence, it is the operator of multiplication by its eigenvalue: S(r) = eiθ1(r) · 1hλ(H0).
It follows that

Tr
(
S′(r)S−1(r)

) ∣∣
r=Re rλ+i0

= deiθ1(r)

dr
e−iθ1(r)∣∣

r=Re rλ+i0

= iθ′1(Re rλ+i0).
Comparing the last two formulas completes the proof.

Scattering phases are well-known to be closely related to the SSF ξ(λ;H1, H0) by
the Birman–Krein formula (see e.g. [8, 10])

detS(λ;H1, H0) = exp(−2πiξ(λ;H1, H0)).

It follows that the SSF is, up to an integer term, equal to the sum of scattering phases
scaled by −(2π)−1. The undetermined integer term is the singular SSF ξ(s)(λ;H1, H0)
([3, 7]). While the absolutely continuous SSF ξ(a) = ξ − ξ(s) has the representation
([7, §5.3], [3, Theorem 9.2.2])

ξ(a)(λ;H1, H0) = − 1
2π

∞∑

j=1
θj(λ; 1), (2.6)

where eiθj(λ;r), r ∈ [0, 1], are the eigenvalues of the scattering matrix S(λ;Hr, H0),
which are continuously enumerated with phases chosen so that θj(λ; 0) = 0.

In the proof of Theorem 2.1 the following equality is derived:

θ′1(λ; r) = − 2βλ
|r − αλ|2 + |βλ|2

,

where αλ := Re rλ+i0, and βλ := Im rλ+i0. If the phase θ1(λ; r) is chosen so that
θ1(λ; 0) = 0, then integrating gives the formula

θ1(λ; 1) = −
1∫

0

2βλ
|r − αλ|2 + |βλ|2

dr.

As mentioned in the introduction, the singular SSF ξ(s)(λ;H1, H0) is known to be
given in terms of resonance points by (1.2). The following generalisation of Theorem 2.1
shows that the absolutely continuous SSF can also be expressed in terms of resonance
points.
Theorem 2.2. Let H0 and V = F ∗JF satisfy conditions (1), (2), (3′), and (4), and
let θj(λ; 1) be as in (2.6). Then for any λ from the set Λ(H0, F ) of full measure in R,

∞∑

j=1
θj(λ; 1) = −

1∫

0

∞∑

j=1

2βjλ
|r − αjλ|2 + |βjλ|2

dr, (2.7)

where rjλ+i0 = αjλ+iβjλ is the jth resonance point with non-zero βjλ, that is, (r−rjλ+i0)−1

is the jth eigenvalue of JTλ+i0(Hr).
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Combining (2.6) and (2.7) gives

ξ(a)(λ;H1, H0) = 1
2π

1∫

0

∞∑

j=1

2βjλ
|r − αjλ|2 + |βjλ|2

dr.

By adding (1.2) we obtain the formula (1.4) for the SSF, which shows that resonance
points rjλ+i0 with zero imaginary part βjλ still contribute to the SSF in the form of
resonance indices.

Proof of Theorem 2.2. The equality (2.5) holds by the same argument as before. Since
JTz(Hr) is trace class for z = λ+ iy, y > 0, its eigenvalues (r − rjz)−1 are summable
and from (2.5) we have

−2iTr (J ImTλ+i0(Hr)) = − lim
y→0+

( ∞∑

j=1
(r − rjz)−1 −

∞∑

j=1
(r − r̄jz)−1

)

= − lim
y→0+

( ∞∑

j=1

2i Im rjz

(r − rjz)(r − r̄jz)

)

= −
∞∑

j=1

2iβjλ
|r − αjλ|2 + |βjλ|2

.

The interchange of limit and sum in the last equality holds since each sum is equal
to the trace of 2iJ ImTz(Hr), which converges to 2iJ ImTλ+i0(Hr) in the trace class.
Dividing by −2πi and integrating, the proof is completed by combining (2.6) with
the equality

ξ(a)(λ;H1, H0) = 1
π

1∫

0

Tr (J ImTλ+i0(Hr)) dr,

for whose proof we refer to [7, Theorem 3.2] (also see [3, §8]).

We conclude with a small related note. Following from condition (3′) and the proof
of Theorem 2.2 is the equality

Tr(ImAλ+i0(Hr)) =
∞∑

j=1
Im σjλ(r), (2.8)

where σjλ(r) are the eigenvalues of the operator Aλ+i0(Hr) := JTλ+i0(Hr). The
root vectors of Aλ+i0(Hr) do not depend on the choice of non-resonant r (see
[4, Proposition 3.1.2]) and we note that if J = 1, which may be assumed in the
case that V ≥ 0, the equality (2.8) implies that the system of root vectors is complete;
in fact these are equivalent conditions by [15, Theorem V-2.1].
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