Opuscula Math. 39, no. 4 (2019), 453-482
https://doi.org/10.7494/OpMath.2019.39.4.453

 
Opuscula Mathematica

Applications of PDEs inpainting to magnetic particle imaging and corneal topography

Andrea Andrisani
Rosa Maria Mininni
Francesca Mazzia
Giuseppina Settanni
Alessandro Iurino
Sabina Tangaro
Andrea Tateo
Roberto Bellotti

Abstract. In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques.

Keywords: PDEs inpainting, medical imaging, magnetic particle imaging, radial curvature image, anterior surface of a cornea.

Mathematics Subject Classification: 35Q68, 68U10, 82D80, 92C55, 94A08.

Full text (pdf)

  1. L. Alvarez, F. Guichard, P.L. Lions, J.M. Morel, Axioms and fundamental equations of image processing, Arch. Ration. Mech. An. 123 (1993), 199-257.
  2. M. Bertalmio, A.L. Bertozzi, G. Sapiro, Navier-Stokes, fluid dynamics, and image and video inpainting, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, 2001, 1-355.
  3. M. Bertalmio, G. Sapiro, V. Caselles, C. Ballester, Image Inpainting, Proceedings of the 27th annual conference on Computer graphics and interactive techniques, ACM Press/Addison-Wesley Publishing Co. 2000, 417-424.
  4. E. Bertolazzi, F. Mazzia, The object oriented C++ library QIBSH++ for Hermite quasi interpolation, 2019.
  5. A. Bertozzi, S. Esedoglu, A. Gillette, Analysis of a two-scale Cahn-Hilliard model for binary image inpainting, Multiscale Model. Sim. 6 (2007), 913-936.
  6. A. Blake, A. Zisserman, Visual reconstruction, Artificial Intelligence Series, The MIT Press, 2003.
  7. J. Bosch, M. Stoll, A fractional inpainting model based on the vector-valued Cahn-Hilliard equation, SIAM J. Imaging Sci. 8 (2015), 2352-2382.
  8. C. Bracco, C. Giannelli, F. Mazzia, A. Sestini, Bivariate hierarchical Hermite spline quasi-interpolation, BIT Num. Math. 56 (2016), 1165-1188.
  9. K. Bredies, T. Pock, B. Wirth, A convex, lower semicontinuous approximation of Euler's elastica energy, SIAM J. Math. Anal. 47 (2015), 566-613.
  10. C. Brito-Loeza, K. Chen, Multigrid method for a modified curvature driven diffusion model for image inpainting, J. Comput. Math. 26 (2008), 856-875.
  11. C. Brito-Loeza, K. Chen, Fast numerical algorithms for Euler's elastica inpainting model, International Journal of Modern Mathematics 5 (2010), 157-182.
  12. M. Burger, L. He, C.B. Schönlieb, Cahn-Hilliard inpainting and a generalization for grayvalue images, SIAM J. Imaging Sci. 2 (2009), 1129-1167.
  13. M. Carriero, A. Leaci, F. Tomarelli, Free gradient discontinuity and image inpainting, J. Math. Sci. 181 (2012), 805-819.
  14. V. Caselles, J.M. Morel, C. Sbert, An axiomatic approach to image interpolation, IEEE T. Image Process. 7 (1998), 376-386.
  15. T.F. Chan, S.H. Kang, J. Shen, Euler's elastica and curvature-based inpainting, SIAM J. Appl. Math. 63 (2006), 564-592.
  16. L. Cherfils, H. Fakih, A. Miranville, On the Bertozzi-Esedoglu-Gillette-Cahn-Hilliard equation with logarithmic nonlinear terms, SIAM J. Imaging Sci. 8 (2015), 1123-1140.
  17. L. Cherfils, H. Fakih, A. Miranville, A Cahn-Hilliard system with a fidelity term for color image inpainting, J. Math. Imaging Vis. 54 (2016), 117-131.
  18. L.R. Croft, P. Goodwill, M. Ferguson, K. Krishnan, S. Conolly, Relaxation in x-space magnetic particle imaging, T.M. Buzug, J. Borgert (eds.), Magnetic Particle Imaging, vol. SPPHY 140, Springer-Verlag, Berlin Heidelberg, 2012, pp. 149-153.
  19. E. De Giorgi, Area-minimizing oriented boudaries, Sem. di Mat. de Scuola Norm. Sup. Pisa, 1960-1961, 1-56 [in Italian]; Engl. transl. in: L. Ambrosio, G. Dal Maso, M. Forti, M. Miranda, S. Spagnolo (eds.), Ennio De Giorgi: Selected Papers, Springer, Berlin, 2006, pp. 231-263.
  20. J. D'Errico, Interpolates (& extrapolates) nan elements in a 2d array, https://www.mathworks.com/matlabcentral/fileexchange/4551, 2012 (accessed January 23, 2017). https://www.mathworks.com/matlabcentral/fileexchange/4551.
  21. S. Esedoglu, J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, Eur. J. Appl. Math. 13 (2002), 353-370.
  22. D. Garcia, Robust smoothing of gridded data in one and higher dimensions with missing values, Comput. Stat. Data An. 54 (2010), 1167-1178.
  23. D. Garcia, Inpaint over missing data in 1-D, 2-D, 3-D,... ND arrays, http://it.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d-2-d-3-d-n-d-arrays, 2017 (accessed November 20, 2017). http://it.mathworks.com/matlabcentral/fileexchange/27994-inpaint-over-missing-data-in-1-d-2-d-3-d-n-d-arrays.
  24. B. Gleich, J. Weizenecker, Tomographic imaging using the nonlinear response of magnetic particles, Nature 435 (2005), 1214-1217.
  25. P.W. Goodwill, S.M. Conolly, The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation, IEEE T. Med. Imaging 29 (2010), 1851-1859.
  26. P.W. Goodwill, S.M. Conolly, Multidimensional X-space magnetic particle imaging, IEEE T. Med. Imaging 30 (2011), 1581-1590.
  27. M. Grüttner, T. Knopp, J. Franke, M. Heidenreich, J. Rahmer, A. Halkola, C. Kaethner, J. Borgert, T.M. Buzug, On the formulation of the image reconstruction problem in magnetic particle imaging, Biomed. Tech. 58 (2013), 583-591.
  28. A. Iurino, BS hermite quasi-interpolation methods for curves and surfaces, Ph.D. thesis, Dipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Bari, May 2014.
  29. IVIS Technologies, Corneal tomography and topography, http://www.ivistechnologies.it/presentations.php, 2017 (accessed June 5, 2017). http://www.ivistechnologies.it/presentations.php.
  30. IVIS Technologies, Ivis technologies, http://www.ivistechnologies.it, 2017 (accessed June 5, 2017). http://www.ivistechnologies.it.
  31. G. Kanizsa, Organization in Vision, Praeger Pub Text, 1979.
  32. T. Knopp, T.M. Buzug, Magnetic particle imaging: an introduction to imaging principles and scanner instrumentation, Springer Science & Business Media, 2012.
  33. T. Knopp, N. Gdaniec, M. Möddel, Magnetic particle imaging: From proof of principle to preclinical applications, Phys. Med. Biol. 62 (2017), R124-R178.
  34. T. Knopp, A. Weber, Sparse reconstruction of the magnetic particle imaging system matrix, IEEE T. Med. Imaging 32 (2013), 1473-1480.
  35. R. Lamour, F. Mazzia, Computation of consistent initial values for properly stated index 3 DAEs, BIT Num. Math. 49 (2009), 161-175.
  36. J. Lampe, J. Bassoy, J. Rahmer, J. Weizenecker, H. Voss, B. Gleich, J. Borgert, Fast reconstruction in magnetic particle imaging, Phys. Med. Biol. 57 (2012), 1113-1134.
  37. S. Masnou, J.M. Morel, Level lines based disocclusion, Proceedings 1998 International Conference on Image Processing, vol. 2, IEEE, 1998, pp. 259-263.
  38. F. Mazzia, A. Sestini, The BS class of Hermite spline quasi-interpolants on nonuniform knot distributions, Bit Numer. Math. 49 (2009), 611-628.
  39. F. Mazzia, A. Sestini, Quadrature formulas descending from BS Hermite spline quasi-interpolation, J. Comput. Appl. Math. 236 (2012), 4105-4118.
  40. R.M. Mininni, A. Miranville, S. Romanelli, Higher-order Cahn-Hilliard equations with dynamic boundary conditions, J. Math. Anal. Appl. 449 (2017), 1321-1339.
  41. L. Modica, S. Mortola, \(\gamma\)-convergence limit for a family of elliptic functionals, Boll. Un. Mat. Ital. A (5) 14 (1977), 526-529 [in Italian].
  42. L. Modica, S. Mortola, An example of \(\gamma\)-convergence, Boll. Un. Mat. Ital. B (5) 14 (1977), 285-299 [in Italian]; Engl. transl. in: J. Jost, X. Li-Jost, Calculus of Variations, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1998, pp. 248-256.
  43. J.M. Morel, S. Solimini, Variational methods in image segmentation: with seven image processing experiments, Progress in nonlinear differential equations and their applications, Birkhäuser, 1995.
  44. D. Mumford, J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Commun. Pur. Appl. Math. 42 (1989), 577-685.
  45. R. Orendorff, D. Hensley, J. Konkle, P. Goodwill, S. Conolly, Computationally efficient image reconstruction via optimization for X-space MPI, 5th International Workshop on Magnetic Particle Imaging (IWMPI), IEEE, 2015.
  46. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion, IEEE T. Pattern. Anal. 12 (1990), 629-639.
  47. L.I. Rudin, S. Osher, Total variation based image restoration with free local constrains, IEEE Comput. Soc. Press 1st International Conference on Image Processing, 1994, 31-35.
  48. L.I. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D 60 (1992), 259-268.
  49. C.B. Schönlieb, Higher-order total variation inpainting, https://it.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-inpainting, 2012 (accessed January 23, 2017). https://it.mathworks.com/matlabcentral/fileexchange/34356-higher-order-total-variation-inpainting.
  50. C.B. Schönlieb, Partial differential equation methods for image inpainting, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2015.
  51. C.B. Schönlieb, A. Bertozzi, Unconditionally stable schemes for higher order inpainting, Commun. Math. Sci. 9 (2011), 413-457.
  52. J. Shen, T.F. Chan, Non-texture inpainting by curvature-driven diffusions, J. Vis. Commun. Image R. 12 (2001), 436-449.
  53. J. Shen, T.F. Chan, Mathematical models for local nontexture inpaintings, SIAM J. Appl. Math. 62 (2002), 1019-1043.
  54. X.C. Tai, J. Hahn, J. Chung, A fast algorithm for Euler's elastica model using augmented Lagrangian method, SIAM J. Imaging Sci. 4 (2011), 313-344.
  55. A. Tateo, A. Andrisani, A. Iurino, G. Settanni, P.F. Stifanelli, P. Larizza, F. Mazzia, R.M. Mininni, S. Tangaro, R. Bellotti, A hybrid approach for FFP velocity gridding in MPI reconstruction, 5th International Workshop on Magnetic Particle Imaging (IWMPI), 2015.
  56. A. Tateo, A. Iurino, G. Settanni, A. Andrisani, P.F. Stifanelli, P. Larizza, F. Mazzia, R.M. Mininni, S. Tangaro, R. Bellotti, Hybrid X-space: a new approach for MPI reconstruction, Phys. Med. Biol. 61 (2016), 4061-4077.
  57. L. Vese, A study in the bv space of a denoising-deblurring variational problem, Appl. Math. Opt. 44 (2001), 131-161.
  58. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: From error visibility to structural similarity, IEEE T. Image Process. 13 (2004), 600-612.
  59. Y. Wu, Z. Yao, G. Kafka, D. Farrell, M. Griswold, R. Brown, The effect of relaxation of magnetic particle imaging, Magnetic Nanoparticles. Proceedings of the First International Workshop on Magnetic Particle Imaging, T.M. Buzug et al. (eds.), World Scientific Publishing, 2010, pp. 113-119.
  • Alessandro Iurino
  • Università degli Studi di Bari Aldo Moro, Dipartimento Interateneo di Fisica "M. Merlin", 70125 Bari, Italy
  • Roberto Bellotti
  • ORCID iD https://orcid.org/0000-0003-3198-2708
  • Università degli Studi di Bari Aldo Moro, Dipartimento Interateneo di Fisica "M. Merlin", 70125 Bari, Italy
  • Istituto Nazionale di Fisica Nucleare, sezione di Bari, 70125 Bari, Italy
  • Communicated by Zdzisław Jackiewicz.
  • Received: 2019-01-15.
  • Accepted: 2010-01-29.
  • Published online: 2019-05-23.
Opuscula Mathematica - cover

Cite this article as:
Andrea Andrisani, Rosa Maria Mininni, Francesca Mazzia, Giuseppina Settanni, Alessandro Iurino, Sabina Tangaro, Andrea Tateo, Roberto Bellotti, Applications of PDEs inpainting to magnetic particle imaging and corneal topography, Opuscula Math. 39, no. 4 (2019), 453-482, https://doi.org/10.7494/OpMath.2019.39.4.453

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.