Opuscula Math. 39, no. 3 (2019), 383-393
https://doi.org/10.7494/OpMath.2019.39.3.383
Opuscula Mathematica
Decomposing complete 3-uniform hypergraph Kn(3) into 7-cycles
Abstract. We use the Katona-Kierstead definition of a Hamiltonian cycle in a uniform hypergraph. A decomposition of complete \(k\)-uniform hypergraph \(K^{(k)}_{n}\) into Hamiltonian cycles was studied by Bailey-Stevens and Meszka-Rosa. For \(n\equiv 2,4,5\pmod 6\), we design an algorithm for decomposing the complete 3-uniform hypergraphs into Hamiltonian cycles by using the method of edge-partition. A decomposition of \(K^{(3)}_{n}\) into 5-cycles has been presented for all admissible \(n\leq17\), and for all \(n=4^{m}+1\) when \(m\) is a positive integer. In general, the existence of a decomposition into 5-cycles remains open. In this paper, we show if \(42~|~(n-1)(n-2)\) and if there exist \(\lambda=\frac{(n-1)(n-2)}{42}\) sequences \((k_{i_{0}},k_{i_{1}},\ldots,k_{i_{6}})\) on \(D_{all}(n)\), then \(K^{(3)}_{n}\) can be decomposed into 7-cycles. We use the method of edge-partition and cycle sequence. We find a decomposition of \(K^{(3)}_{37}\) and \(K^{(3)}_{43}\) into 7-cycles.
Keywords: uniform hypergraph, 7-cycle, cycle decomposition.
Mathematics Subject Classification: 05C65, 05C85.
- R. Bailey, B. Stevens, Hamiltonian decompositions of complete \(k\)-uniform hypergraphs, Discrete Math. 310 (2010), 3088-3095.
- H. Huo, L.Q. Zhao, W. Feng, Y.S. Yang, Jirimutu, Decomposing the complete 3-uniform hypergraph \(K_n^{(3)}\) into Hamiltonian cycles, Journal of Mathematics 58 (2015), 965-976.
- Jirimutu, J. Wang, Study on graph labelings and hypergraph decomposition, Doctoral Dissertation, Dalian University of Technology, 2006.
- Jirimutu, J.F. Wang, Hamiltonian decompositions of complete bipartite hypergraphs, Acta Math. Appl. Sin. 4 (2001), 563-566.
- H. Jordon, G. Newkirk, 4-cycle decompositions of complete 3-uniform hypergraphs, Australas. J. Combin. 71 (2017), 312-323.
- G.Y. Katona, H.A. Kierstead, Hamiltonian chains in hypergraphs, J. Graph Theory 30 (1999), 205-212.
- G.R. Li, Y.M. Lei, L.Q. Zhao, Y.S. Yang, Jirimutu, Decomposing the complete 3-uniform hypergraph \(K_n^{(3)}\) into 5-cycles, Applied Mechanics and Materials 672-674 (2014), 1935-1939.
- G.R. Li, Y.M. Lei, L.Q. Zhao, Y.S. Yang, Jirimutu, Decomposing the complete 3-uniform hypergraph \(K_n^{(3)}\) into 5-cycles, J. Math. Res. Appl. 36 (2016), 9-14.
- G.R. Li, Y.M. Lei, Y.S. Yang, Jirimutu, Decomposing the complete 3-uniform hypergraph \(K_n^{(3)}\) into 7-cycles, (2014), submitted.
- M. Meszka, A. Rosa, Decomposing complete 3-uniform hypergraph into Hamiltonian cycles, Australas. J. Combin. 45 (2009), 291-302.
- M. Meszka, A. Rosa, A possible analogue of \(\rho\)-labellings for 3-uniform hypergraghs, Electron. Notes Discrete Math. 60 (2017), 33-37.
- H. Verrall, Hamiltonian decompositions of complete 3-uniform hypergraphs, Discrete Math. 132 (1994), 333-348.
- J.F. Wang, Tony T. Lee, Paths and Cycles of Hypergraphs, Science in China (A) 42 (1999), 1-12.
- J.F. Wang, G.Y. Yan, On cycle structure of hypergraph, Chinese Science Bulletin 19 (2001), 1585-1589.
- B.G. Xu, J.F. Wang, On the Hamiltonian decompositions of complete 3-uniform hypergraphs, Electron. Notes Discrete Math. 11 (2002), 722-733.
- Meihua
- Mongolia University for the Nationalities, College of Mathematics of Inner, Tongliao, China 028043
- Meiling Guan
- Mongolia University for the Nationalities, College of Mathematics of Inner, Tongliao, China 028043
- Jirimutu
- Mongolia University for the Nationalities, College of Mathematics of Inner, Tongliao, China 028043
- Communicated by Gyula O.H. Katona.
- Received: 2018-01-29.
- Revised: 2018-08-22.
- Accepted: 2018-08-22.
- Published online: 2019-02-23.