Opuscula Math. 39, no. 2 (2019), 259-279
https://doi.org/10.7494/OpMath.2019.39.2.259
Opuscula Mathematica
Isotropic and anisotropic double-phase problems: old and new
Abstract. We are concerned with the study of two classes of nonlinear problems driven by differential operators with unbalanced growth, which generalize the \((p,q)\)- and \((p(x),q(x))\)-Laplace operators. The associated energy is a double-phase functional, either isotropic or anisotropic. The content of this paper is in relationship with pioneering contributions due to P. Marcellini and G. Mingione.
Keywords: differential operator with unbalanced growth, double-phase energy, variable exponent.
Mathematics Subject Classification: 35J60, 35J65, 58E05.
- E. Acerbi, G. Mingione, Gradient estimates for the \(p(x)\)-Laplacean system, J. Reine Angew. Math. 584 (2005), 117-148.
- A. Azzollini, Minimum action solutions for a quasilinear equation, J. London Math. Soc. 92 (2015), 583-595.
- A. Azzollini, P. d'Avenia, A. Pomponio, Quasilinear elliptic equations in \(\mathbb{R}^N\) via variational methods and Orlicz-Sobolev embeddings, Calc. Var. Partial Differential Equations 49 (2014), 197-213.
- M. Badiale, L. Pisani, S. Rolando, Sum of weighted Lebesgue spaces and nonlinear elliptic equations, Nonlinear Differ. Equ. Appl. (NoDEA) 18 (2011), 369-405.
- J.M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. Roy. Soc. London Ser. A 306 (1982) 1496, 557-611.
- S. Baraket, S. Chebbi, N. Chorfi, V.D. Rădulescu, Non-autonomous eigenvalue problems with variable \((p_1,p_2)\)-growth, Advanced Nonlinear Studies 17 (2017), 781-792.
- P. Baroni, M. Colombo, G. Mingione, Harnack inequalities for double phase functionals, Nonlinear Anal. 121 (2015), 206-222.
- P. Baroni, M. Colombo, G. Mingione, Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J. 27 (2016) 3, 347-379.
- P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations (2018), 57:62.
- H. Berestycki, P.L. Lions, Nonlinear scalar field equations, I. Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313-345.
- H. Brezis, F. Browder, Partial differential equations in the 20th century, Adv. Math. 135 (1998), 76-144.
- H. Brezis, L. Nirenberg, Remarks on finding critical points, Comm. Pure Appl. Math. 44 (1991), 939-963.
- J. Byeon, Z.Q. Wang, Standing waves with a critical frequency for nonlinear Schrödinger equations, Arch. Ration. Mech. Anal. 165 (2002), 295-316.
- M. Cencelj, V.D. Rădulescu, D.D. Repovš, Double phase problems with variable growth, Nonlinear Anal. 177 (2018), 270-287.
- Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006), 1383-1406.
- N. Chorfi, V.D. Rădulescu, Standing wave solutions of a quasilinear degenerate Schrödinger equation with unbounded potential, Electron. J. Qual. Theory Differ. Equ. 37 (2016), 1-12.
- M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Ration. Mech. Anal. 215 (2015) 2, 443-496.
- M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015) 1, 219-273.
- C. De Filippis, Higher integrability for constrained minimizers of integral functionals with \((p,q)\)-growth in low dimension, Nonlinear Anal. 170 (2018), 1-20.
- L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with \((p,q)\)-growth, J. Differential Equations 204 (2004), 5-55.
- S. Fučik, J. Nečas, J. Souček, V. Souček, Spectral Analysis of Nonlinear Operators, Lecture Notes in Mathematics, vol. 346, Springer-Verlag, Berlin-New York, 1973.
- I.H. Kim, Y.H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math. 147 (2015), 169-191.
- P. Marcellini, On the definition and the lower semicontinuity of certain quasi-convex integrals, Ann. Inst. H. Poincaré, Anal. Non Linéaire 3 (1986), 391-409.
- P. Marcellini, Regularity and existence of solutions of elliptic equations with \(p,q\)-growth conditions, J. Differential Equations 90 (1991), 1-30.
- P. Marcellini, Everywhere regularity for a class of elliptic systems without growth conditions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996) 1, 1-25.
- G. Mingione, Talk at the Third Conference on Recent Trends in Nonlinear Phenomena, University of Perugia, 28-30 September 2016.
- N.S. Papageorgiou, V.D. Rădulescu, D.D. Repovš, Double-phase problems with reaction of arbitrary growth, Z. Angew. Math. Phys. 69 (2018), Art. 108, 21 pp.
- P. Pucci, V.D. Rădulescu, The impact of the mountain pass theory in nonlinear analysis: a mathematical survey, Boll. Unione Mat. Ital. Ser. IX 3 (2010), 543-584.
- P. Pucci, S. Saldi, Critical stationary Kirchhoff equations in \(\mathbb{R}^N\) involving nonlocal operators, Rev. Mat. Iberoam. 32 (2016), 1-22.
- P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016), 27-55.
- V.D. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Analysis: Theory, Methods and Applications 121 (2015), 336-369.
- V.D. Rădulescu, D.D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, CRC Press, Taylor & Francis Group, Boca Raton FL, 2015.
- V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986) 4, 675-710; English translation in Math. USSR-Izv. 29 (1987) 1, 33-66.
- V.V. Zhikov, On Lavrentiev's phenomenon, Russian J. Math. Phys. 3 (1995) 2, 249-269.
- Vicenţiu D. Rădulescu
- https://orcid.org/0000-0003-4615-5537
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia
- Institute of Mathematics "Simion Stoilow", Romanian Academy of Sciences, P.O. Box 1-764, 014700 Bucharest, Romania
- Communicated by Dušan Repovš.
- Received: 2018-11-04.
- Accepted: 2018-11-10.
- Published online: 2018-12-07.