Opuscula Math. 39, no. 1 (2019), 49-60
https://doi.org/10.7494/OpMath.2019.39.1.49

 
Opuscula Mathematica

Boundary value problems with solutions in convex sets

Gerd Herzog
Peer Chr. Kunstmann

Abstract. By means of the continuation method for contractions we prove the existence of solutions of Dirichlet boundary value problems in convex sets. As an application we prove the existence of concave solutions of certain boundary value problems in ordered Banach spaces.

Keywords: Dirichlet boundary value problems, solutions in convex sets, continuation method, ordered Banach spaces, concave solutions.

Mathematics Subject Classification: 34B15, 47H10.

Full text (pdf)

  1. R.P. Agarwal, M. Meehan, D. O'Regan, Fixed point theory and applications, Cambridge Tracts in Mathematics, vol. 141, Cambridge University Press, Cambridge, 2001.
  2. O. Alvarez, J.-M. Lasry, P.-L. Lions, Convex viscosity solutions and state constraints, J. Math. Pures Appl. 76 (1997), 265-288.
  3. J. Appell, C.-J. Chen, S. Tseng, M. Väth, A continuation and existence result for a boundary value problem on an unbounded domain arising for the electrical potential in a cylindrical double layer, J. Math. Anal. Appl. 332 (2007), 1134-1147.
  4. P.B. Bailey, L.F. Shampine, P.E. Waltman, Nonlinear two point boundary value problems, Mathematics in Science and Engineering, vol. 44, Academic Press, New York-London, 1968.
  5. M. Frigon, A. Granas, Z.E.A. Guennoun, Alternative non linéaire pour les applications contractantes, Ann. Sci. Math. Québec 19 (1995), 65-68.
  6. A. Granas, Continuation method for contractive maps, Topol. Methods Nonlinear Anal. 3 (1994), 375-379.
  7. P. Hartman, Ordinary differential equations, Classics in Applied Mathematics, 38. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002.
  8. M. Keller-Ressel, E. Mayerhofer, A.G. Smirnov, On convexity of solutions of ordinary differential equations, J. Math. Anal. Appl. 368 (2010), 247-253.
  9. R. Lemmert, P. Volkmann, Randwertprobleme für gewöhnliche Differentialgleichungen in konvexen Teilmengen eines Banachraumes, J. Differential Equations 27 (1978), 138-143.
  10. R. Lemmert, P. Volkmann, Über die Existenz von Lösungen für Randwertprobleme in konvexen Mengen, Arch. Math. 32 (1979), 68-74.
  11. R. Lemmert, P. Volkmann, On the positivity of semigroups of operators, Commentat. Math. Univ. Carol. 39 (1998), 483-489.
  12. R.H. Martin, Nonlinear operators and differential equations in Banach spaces, Pure and Applied Mathematics. Wiley-Interscience, New York-London-Sydney, 1976.
  13. R. Redheffer, Matrix differential equations, Bull. Am. Math. Soc. 81 (1975), 485-488.
  14. K. Schmitt, P. Volkmann, Boundary value problems for second order differential equations in convex subsets of a Banach space, Trans. Amer. Math. Soc. 218 (1976), 397-405.
  15. P. Volkmann, Gewöhnliche Differentialungleichungen mit quasimonoton wachsenden Funktionen in topologischen Vektorräumen, Math. Z. 127 (1972), 157-164.
  16. P. Volkmann, Über die Invarianz konvexer Mengen und Differentialungleichungen in einem normierten Raume, Math. Ann. 203 (1973), 201-210.
  • Gerd Herzog
  • Karlsruher Institut für Technologie (KIT), Institut für Analysis, D-76128 Karlsruhe, Germany
  • Peer Chr. Kunstmann
  • Karlsruher Institut für Technologie (KIT), Institut für Analysis, D-76128 Karlsruhe, Germany
  • Communicated by Jean Mawhin.
  • Received: 2018-03-29.
  • Accepted: 2018-06-21.
  • Published online: 2018-08-07.
Opuscula Mathematica - cover

Cite this article as:
Gerd Herzog, Peer Chr. Kunstmann, Boundary value problems with solutions in convex sets, Opuscula Math. 39, no. 1 (2019), 49-60, https://doi.org/10.7494/OpMath.2019.39.1.49

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.