Opuscula Math. 38, no. 6 (2018), 859-870
https://doi.org/10.7494/OpMath.2018.38.6.859

 
Opuscula Mathematica

Minimal unavoidable sets of cycles in plane graphs

Tomáš Madaras
Martina Tamášová

Abstract. A set \(S\) of cycles is minimal unavoidable in a graph family \(\cal{G}\) if each graph \(G \in \cal{G}\) contains a cycle from \(S\) and, for each proper subset \(S^{\prime}\subset S\), there exists an infinite subfamily \(\cal{G}^{\prime}\subseteq\cal{G}\) such that no graph from \(\cal{G}^{\prime}\) contains a cycle from \(S^{\prime}\). In this paper, we study minimal unavoidable sets of cycles in plane graphs of minimum degree at least 3 and present several graph constructions which forbid many cycle sets to be unavoidable. We also show the minimality of several small sets consisting of short cycles.

Keywords: plane graph, polyhedral graph, set of cycles.

Mathematics Subject Classification: 05C10.

Full text (pdf)

  1. J. Bensmail, On \(q\)-power cycles in cubic graphs, Discuss. Math. Graph Theory 37 (2017), 211-220.
  2. O.V. Borodin, Solution of problems of Kotzig and Grünbaum concerning the isolation of cycles in planar graphs, Math. Notes 46 (1989), 835-837 (English translation), Mat. Zametki 46 (1989), 9-12 [in Russian].
  3. G. Exoo, Three graphs and the Erdös-Gyárfás conjecture, arXiv:1403.5636 [math.CO].
  4. C.C. Heckman, R. Krakovski, Erdös-Gyárfás conjecture for cubic planar graphs, Electron. J. Combin. 20 (2013) P7.
  5. S. Jendrol', P.J. Owens, On light graphs in 3-connected plane graphs without triangular or quadrangular faces, Graphs and Combinatorics 17 (2001) 4, 659-680.
  6. A. Kotzig, Contribution to the theory of Eulerian polyhedra, Mat. Čas. SAV (Math. Slovaca) 5 (1955), 101-113.
  7. T. Madaras, M. Tamášová, Minimal unavoidable sets of cycles in polyhedral graphs, manuscript.
  8. P. Wernicke, Über den kartographischen Vierfarbensatz, Math. Ann. 58 (1904), 413-426.
  9. D. West, Introduction to Graph Theory, 2nd ed., Prentice Hall, 2001.
  • Tomáš Madaras
  • Pavol Jozef Šafárik University, Faculty of Science, Institute of Mathematics, Jesenná 5, 04001 Košice, Slovakia
  • Martina Tamášová
  • Pavol Jozef Šafárik University, Faculty of Science, Institute of Mathematics, Jesenná 5, 04001 Košice, Slovakia
  • Communicated by Ingo Schiermeyer.
  • Received: 2017-11-28.
  • Revised: 2018-06-08.
  • Accepted: 2018-06-08.
  • Published online: 2018-07-05.
Opuscula Mathematica - cover

Cite this article as:
Tomáš Madaras, Martina Tamášová, Minimal unavoidable sets of cycles in plane graphs, Opuscula Math. 38, no. 6 (2018), 859-870, https://doi.org/10.7494/OpMath.2018.38.6.859

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.