Opuscula Math. 38, no. 6 (2018), 765-777
https://doi.org/10.7494/OpMath.2018.38.6.765
Opuscula Mathematica
Improved bounds for solutions of ϕ-Laplacians
Waldo Arriagada
Jorge Huentutripay
Abstract. In this short paper we prove a parametric version of the Harnack inequality for \(\phi\)-Laplacian equations. In this sense, the estimates are optimal and represent an improvement of previous bounds for this kind of operators.
Keywords: Orlicz-Sobolev space, Harnack inequality, \(\phi\)-Laplacian.
Mathematics Subject Classification: 35B50, 35J20, 35J60.
- R.A. Adams, John J.J.F. Fournier, Sobolev Spaces, vol. 140, Pure and Applied Mathematics, 2nd ed., Elsevier B.V., Amsterdam, 2003.
- W. Arriagada, J. Huentutripay, A Harnack's inequality in Orlicz-Sobolev spaces, Studia Math. 243 (2018), 117-137.
- W. Arriagada, J. Huentutripay, Regularity, positivity and asymptotic vanishing of solutions of a \(\phi\)-Laplacian, Anal. Ştiinţ Univ. "Ovidius" Constanţa Ser. Mat. 25 (2017) 3, 59-72.
- H. Brezis, Analyse Fonctionnelle: Théorie et Applications, Masson, Paris, 1983.
- E. DiBenedetto, Partial Differential Equations, Cornerstones, Birkhäuser Boston, Inc., Boston, MA, 2nd ed., 2010.
- M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic System, Princeton Univ. Press, Princeton, New Jersey, 1983.
- D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag Germany, reprint of the 1998 edition, 2001.
- J.P. Gossez, Orlicz-Sobolev spaces and nonlinear elliptic boundary value problems, [in:] S. Fučík, A. Kufner (eds.), Nonlinear Analysis, Function Spaces and Applications, Proceedings of a Spring School held in Horní Bradlo, 1978, vol. 1, BSB B.G. Teubner Verlagsgesellschaft, Leipzig, 1979. Teubner Texte zur Mathematik, 59-94.
- U. Kaufmann, I. Medri, One-dimensional singular problems involving the \(p\)-Laplacian and nonlinearities indefinite in sign, Adv. Nonlinear Anal. 5 (2016), 251-259.
- M. Krasnosel'skii, J. Rutickii, Convex Functions and Orlicz Space, English translation P. Noordhoff Ltd., Groningen, 1961.
- G.M. Lieberman, The natural generalization of the natural conditions of Ladyzhenskaya and Ural'tseva for elliptic equations, Comm. Partial Differential Equations 16 (1991) 2-3, 311-361.
- B. Maultsby, Uniqueness of solutions to singular \(p\)-Laplacian equations with subcritical nonlinearity, Adv. Nonlinear Anal. 6 (2017) 1, 37-59.
- J. Moser, On Harnack's theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591.
- V. Rădulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336-369.
- V. Rădulescu, D. Repovš, Partial Differential Equations with Variable Exponents: Variational Methods and Qualitative Analysis, Chapman & Hall/CRC Monographs and Research Notes in Mathematics, Taylor & Francis Group, Boca Raton FL, 2015.
- I.-L. Stăncuţ, I.D. Stîrcu, Eigenvalue problems for anisotropic equations involving a potential on Orlicz-Sobolev type spaces, Opuscula Math. 36 (2016) 1, 81-101.
- Waldo Arriagada
- Khalifa University, Department of Applied Mathematics and Sciences, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Jorge Huentutripay
- Universidad Austral de Chile, Instituto de Ciencias Físicas y Matemáticas, Campus Isla Teja, Valdivia, Chile
- Communicated by Vicentiu D. Radulescu.
- Received: 2018-01-11.
- Revised: 2018-02-21.
- Accepted: 2018-02-21.
- Published online: 2018-07-05.