Opuscula Math. 38, no. 5 (2018), 733-758
https://doi.org/10.7494/OpMath.2018.38.5.733
Opuscula Mathematica
Eigenvalue asymptotics for potential type operators on Lipschitz surfaces of codimension greater than 1
Grigori Rozenblum
Grigory Tashchiyan
Abstract. For potential type integral operators on a Lipschitz submanifold the asymptotic formula for eigenvalues is proved. The reasoning is based upon the study of the rate of operator convergence as smooth surfaces approximate the Lipschitz one.
Keywords: integral operators, potential theory, eigenvalue asymptotics.
Mathematics Subject Classification: 47G40, 35P20.
- M.S. Agranovich, Spectral properties of potential-type operators for a class of strongly elliptic systems on smooth and Lipschitz surfaces, Tr. Mosk. Mat. Obsh. 62 (2001), 3-53 [in Russian]; English translation in Trans. Moscow Math. Soc. 62 (2001), 1-47.
- M.S. Agranovich, Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains, Uspehi Matem. Nauk 57 (2002) 5, 3-78 [in Russian]; English translation in Russian Mathem. Surveys 57 (2002), 847-920.
- M.S. Agranovich, B.A. Amosov, Estimates of \(s\)-numbers and spectral asymptotics for integral operators of potential type on non-smooth surfaces, Funct. Anal. i Prilozh. 30 (1996) 2, 1-18 [in Russian]; English translation in: Funct. Anal. and Appl. 30 (1996) 75-89.
- M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag, Berlin, 1999.
- M.Sh. Birman, M.Z. Solomjak, Asymptotics of the spectrum of weakly polar integral operators, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 1142-1158 [in Russian]; translation in Mathematics of the USSR-Izvestiya, 4:5 (1970), 1151-1168.
- M.Sh. Birman, M.Z. Solomjak, The asymptotics of the spectrum of pseudodifferential operators with anisotropic-homogeneous symbols, I, II, Vestnik Leningr. Univ. (Math.) no. 13 (1977), 13-27, no. 13 (1979), 5-10; English translation in Vestnik. Leningr. Univ. Math. 10 (1980), 12 (1982).
- T. Chang, Boundary integral operator for the fractional Laplacian on the boundary of a bounded smooth domain, J. Integral Equations Appl. 28 (2016) 3, 343-372.
- M. Cotlar, R. Cignoli, An Introduction to Functional Analysis, NH, 1974.
- M. Dauge, D. Robert, Weyl's formula for a class of pseudodifferential operators with negative order on \(L^2(\mathbb{R}^n)\), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 91-122.
- L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
- M. Goffeng, Analytic formulas for the topological degree of non-smooth mappings: the odd-dimensional case, Adv. Math. 231 (2012) 1, 357-377.
- I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow, 1965; English transl.: Amer. Math. Soc., 1969.
- G. Grubb, Singular Green operators and their spectral asymptotics, Duke Math. J. 51 (1984), 477-528.
- G. Hsiao, W. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008.
- G.E. Karadzhov, The inclusion of integral operators in the classes \(S_p\) for \(p\geq 2\), Integral and differential operators. Differential equations, Probl. Mat. Anal., vol. 3, Leningrad, 1972, pp. 28-33 [in Russian]; English transl. in J. Soviet Mathem. 1 (1973), 200-204.
- G.P. Kostometov, Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal, Matemat. Sbornik. 94(136)-3(7) (1974), 444-451 [in Russian]; English translation in Math. USSR-Sb. 23:3 (1974), 417-424.
- G.P. Kostometov, On the asymptotics of the spectrum of integral operators with polar kernels, Vestn. Leningr. Univ. 1977, no. 13, Mat. Mekh. Astron. 1977, no. 3, (1977) 166-167 [in Russian].
- G. Rozenblum, G. Tashchiyan, Eigenvalue asymptotics for potential type operators on Lipschitz surfaces, Russian J. Math. Phys. 13 (2006) 3, 326-339.
- N.N. Voitovich, B.Z. Katsenelenbaum, A.N. Sivov, Generalized Method of Eigenoscillations in Diffraction Theory, Nauka, Moscow, 1977 [in Russian].
- B. Russo, On the Hausdorff-Young theorem for integral operators, Pacific J. Math. 68 (1977) 1, 241-253.
- G. Verchota, Layer potentials and regularity for the Dirichlet problems in Lipschitz domains, J. Funct. Anal. 59 (1984), 572-611.
- Grigori Rozenblum
- Department of Mathematics, Chalmers University of Technology, Sweden
- University of Gothenburg, Eklandagatan 86, S-412 96 Gothenburg, Sweden
- Department of Physics, St. Petersburg State University, Russia
- Grigory Tashchiyan
- St. Petersburg University for Telecommunications, Department of Mathematics, St. Petersburg, 198504, Russia
- Communicated by P.A. Cojuhari.
- Received: 2017-12-14.
- Accepted: 2017-12-27.
- Published online: 2018-06-12.