Opuscula Math. 38, no. 5 (2018), 681-698
https://doi.org/10.7494/OpMath.2018.38.5.681
Opuscula Mathematica
Krein-von Neumann extension of an even order differential operator on a finite interval
Yaroslav I. Granovskyi
Leonid L. Oridoroga
Abstract. We describe the Krein-von Neumann extension of minimal operator associated with the expression \(\mathcal{A}:=(-1)^n\frac{d^{2n}}{dx^{2n}}\) on a finite interval \((a,b)\) in terms of boundary conditions. All non-negative extensions of the operator \(A\) as well as extensions with a finite number of negative squares are described.
Keywords: non-negative extension, Friedrichs' extension, Krein-von Neumann extension, boundary triple, Weyl function.
Mathematics Subject Classification: 47A05.
- N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Spaces, Nauka, Moscow, 1978.
- A.Yu. Ananieva, V.S. Budyika, To the spectral theory of the Bessel operator on finite interval and half-line, J. of Math. Scien. 211 (2015) 5, 624-645.
- T. Ando, K. Nishio, Positive selfadjoint extensions of positive symmetric operators, Tohoku Math. J. 22 (1970), 65-75.
- M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, G. Teschl, Spectral theory for perturbed Krein Laplacians in nonsmooth domains, Adv. Math. 223 (2010), 1372-1467.
- M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, G. Teschl, The Krein-von Neumann extension and its connection to an abstract buckling problem, Math. Nachr. 283 (2010) 2, 165-179.
- M.S. Ashbaugh, F. Gesztesy, M. Mitrea, R. Shterenberg, G. Teschl, A survey of the Krein-von Neumann extension, the corresponding abstract buckling problem, and Weyl-type spectral asymptotics for perturbed Krein Laplacians in non smooth domains, [in:] M. Demuth and W. Kirsh (eds.), Mathematical Physics, Spectral Theory and Stochastic Analysys, Operator Theory: Advances and Applications 232, Birkhäuser, Springer, Basel (2013), 1-106.
- J. Behrndt, F. Gesztesy, T. Micheler, M. Mitrea, The Krein-von Neumann realization of perturbed Laplacians on bounded Lipschitz domains, Operator Theory: Advances and Applications 255, Birkhäuser, Springer, Basel (2016), 49-66.
- J. Behrndt, T. Micheler, Elliptic differential operators on Lipschitz domains and abstract boundary value problems, J. Funct. Anal. 267 (2014), 3657-3709.
- M.Sh. Birman, Perturbations of the continuous spectrum of a singular elliptic operator by varying the boundary and the boundary conditions, Vestnik Leningrad Univ. 17 (1962) 1, 22-55 [in Russian]; transl. in Spectral Theory of Differential Operators: M. Sh. Birman 80th Anniversary Collection, T. Suslina and D. Yafaev (eds.), AMS Translation, Ser. 2, Advances in the Mathematical Sciences 225, Amer. Math. Soc., Providence, RI (2008), 19-53.
- B.M. Brown, J.S. Christiansen, On the Krein and Friedrichs extension of a positive Jacobi operator, Expo. Math. 23 (2005), 176-186.
- L. Bruneau, J. Dereziński, V. Georgescu, Homogeneous Schrödinger Operators on Half-line, Ann. Henri Poincaré 12 (2011), 547-590.
- V.A. Derkach, M.M. Malamud, Generalized rezolvent and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991) 1, 1-95.
- V.A. Derkach, M.M. Malamud, Characteristic of almost solvable extensions of a Hermitian operators, Ukr. Mat. Zh. 44 (1992) 4, 435-459.
- V.A. Derkach, M.M. Malamud, The extension theory of Hermitian operators and the moment problem, J. Math. Sci. (New York) 73 (1995), 141-242.
- V.A. Derkach, M.M. Malamud, Extension theory of symmetric operators and boundary value problems, Proceedings of Institute of Mathematics of NAS of Ukraine 104 (2017) [in Russian].
- J. Eckhardt, F. Gesztesy, R. Nichols, G. Teschl, Weyl-Titchmarsh Theory for Sturm-Liouville Operators With Distributional Potentials, Opuscula Math. 33 (2013) 3, 467-563.
- W.N. Everitt, H. Kalf, The Bessel differential equation and the Hankel transform, Jour. of Comput. and App. Math. 208 (2007), 3-19.
- H. Freudental, Über die Friedrichsche Fortsetzung halbbeschränkter Hermitescher Operatoren, Kon. Akad. Wetensch., Amsterdam, Proc. 39 (1936), 832-833.
- C. Fulton, Titchmarsh-Weyl m-functions for second-order Sturm-Liouville problems with two singular endpoints, Math. Nachr. 281 (2008) 10, 1418-1475.
- C. Fulton, H. Langer, Sturm-Liouville operators with singularities and generalized Nevanlinna functions, Complex Analysis and Operator Theory 4 (2010) 2, 179-243.
- F. Gesztesy, M. Mitrea, A description of all self-adjoint extensions of the laplacian and Krein-type resolvent formulas on non-smooth domains, J. Analyse Math. 113 (2011), 53-172.
- F. Gesztesy, M. Mitrea, Robin-to-Robin maps and Krein-type resolvent formulas for Schrödinger operators on bounded Lipschitz domains, [in:] V. Adamyan, Y.M. Berezansky, I. Gohberg, M.L. Gorbachuk, V. Gorbachuk, A.N. Kochubei, H. Langer, and G. Popov (eds.), Modern Analysis and Applications. The Mark Krein Centenary Conference 2, Operator Theory: Advances and Applications, vol. 191, Birkhäuser, Basel, 2009, 81-113.
- V.I. Gorbachuk, M.L. Gorbachuk, Boundary Value Problems for Operator Differential Equations, Mathematics and its Applications (Soviet Series), vol. 48, Kluwer Academic Publishers Group, Dordrecht, 1991.
- G. Grubb, A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 3, 425-513.
- G. Grubb, Spectral asymptotics for the "soft" selfadjoint extension of a symmetric elliptic differential operator, J. Operator Th. 10 (1983), 9-20.
- S. Hassi, M. Malamud, H. de Snoo, On Krein's extension theory of nonnegative operators, Math. Nachr. 274-275 (2004), 40-73.
- H. Kalf, A characterization of the Friedrichs extension of Sturm-Liouville operators, J. London Math. Soc. 17 (1978) 2, 511-521.
- T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, Heidelberg, New York, 1966.
- M.G. Krein, The theory of self-adjoint extensions of semibounded Hermitian transformations and its applications, I, Sb. Math. 20 (1947) 3, 431-495; II, ibid., 21 3, 365-404 [in Russian].
- A.A. Lunyov, Spectral functions of the simplest even order ordinary differential operator, Methods of Functional Analysis and Topology 19 (2013) 4, 319-326.
- M.M. Malamud, Spectral theory of elliptic operators in exterior domains, Russ. J. Math. Phys. 17 (2010), 96-125.
- M.M. Malamud, H. Neidhardt, Sturm-Liouville boundary value problems with operator potentials and unitary equivalence, J. Differential Equations 252 (2012), 5875-5922.
- J. von Neumann, Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren, Math. Ann. 102 (1929), 49-131.
- F.S. Rofe-Beketov, Self-adjoint extensions of differential operators in a space of vector-valued functions, Teor. Funkcii Funkcional. Anal. i Prilozen. 8 (1969), 3-24 [in Russian].
- Yaroslav I. Granovskyi
- NAS of Ukraine, Institute of Applied Mathematics and Mechanics, Ukraine
- Leonid L. Oridoroga
- Donetsk National University, Donetsk, Ukraine
- Communicated by A.A. Shkalikov.
- Received: 2017-08-21.
- Revised: 2017-12-15.
- Accepted: 2017-12-20.
- Published online: 2018-06-12.