Opuscula Math. 38, no. 4 (2018), 537-556
https://doi.org/10.7494/OpMath.2018.38.4.537
Opuscula Mathematica
On the non-existence of zero modes
Abstract. We consider magnetic fields on \(\mathbb{R}^3\) which are parallel to a conformal Killing field. When the latter generates a simple rotation we show that a Weyl-Dirac operator with such a magnetic field cannot have a zero mode. In particular this allows us to expand the class of non zero mode producing magnetic fields to include examples of non-trivial smooth compactly supported fields.
Keywords: Weyl-Dirac operator, zero modes.
Mathematics Subject Classification: 35J46, 35P20, 35Q40, 81Q10.
- C. Adam, B. Muratori, C. Nash, Zero modes of the Dirac operator in three dimensions, Phys. Rev. D 60 (1999), 125001.
- C. Adam, B. Muratori, C. Nash, Degeneracy of zero modes of the Dirac operator in three dimensions, Phys. Lett. B 485 (2000), 314-318.
- A.A. Balinsky, W.D. Evans, On the zero modes of Pauli operators, J. Funct. Anal. 179 (2001), 120-135.
- A.A. Balinsky, W.D. Evans, On the zero modes of Weyl-Dirac operators and their multiplicity, Bull. London Math. Soc. 34 (2002), 236-242.
- A.F. Beardon, The Geometry of Discrete Groups, Springer-Verlag, New York, 1983.
- D.E. Blair, Inversion Theory and Conformal Mapping, American Mathematical Society, Providence, 2000.
- D.M. Elton, New examples of zero modes, J. Phys. A 33 (2000), 7297-7303.
- D.M. Elton, The local structure of the set of zero mode producing magnetic potentials, Commun. Math. Phys. 229 (2002), 121-139.
- D.M. Elton, Asymptotics for Erdős-Solovej Zero Modes in Strong Fields, Ann. Henri Poincaré 17 (2016), 2951-2973.
- D.M. Elton, N.T. Ta, Eigenvalue counting estimates for a class of linear spectral pencils with applications to zero modes, J. Math. Anal. Appl. 391 (2012), 613-618.
- L. Erdős, J.P. Solovej, The kernel of Dirac operators on \(\mathbb{S}^3\) and \(\mathbb{R}^3\), Rev. Math. Phys. 13 (2001), 1247-1280.
- J. Fröhlich, E. Lieb, M. Loss, Stability of Coulomb systems with magnetic fields I. The one electron atom, Commun. Math. Phys. 104 (1986), 251-270.
- D.P. Hewett, A. Moiola, On the maximal Sobolev regularity of distributions supported by subsets of Euclidean space, Anal. Appl. (Singap.) 15 (2017), 731-770.
- M. Loss, H.T. Yau, Stability of Coulomb systems with magnetic fields III. Zero energy states of the Pauli operator, Commun. Math. Phys. 104 (1986), 283-290.
- M. Reed, B. Simon, Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, San Diego, 1979.
- M. Spivak, A Comprehensive Introduction to Differential Geometry, Volume 2, Publish or Perish, Houston, 1999.
- B. Thaller, The Dirac Equation, Springer-Verlag, Berlin, 1992.
- Daniel M. Elton
- Lancaster University, Fylde College, Department of Mathematics and Statistics, Lancaster LA1 4YF, United Kingdom
- Communicated by Sergey N. Naboko.
- Received: 2017-11-30.
- Accepted: 2017-12-11.
- Published online: 2018-04-11.