Opuscula Math. 38, no. 1 (2018), 31-40
https://doi.org/10.7494/OpMath.2018.38.1.31
Opuscula Mathematica
Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities
Amar Chidouh
Delfim F. M. Torres
Abstract. We prove existence of positive solutions to a boundary value problem depending on discrete fractional operators. Then, corresponding discrete fractional Lyapunov-type inequalities are obtained.
Keywords: fractional difference equations, Lyapunov-type inequalities, fractional boundary value problems, positive solutions.
Mathematics Subject Classification: 26A33, 26D15, 39A12.
- F.M. Atıcı, P.W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011) 4, 445-456.
- N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst. 29 (2011) 2, 417-437.
- N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems, Signal Process. 91 (2011) 3, 513-524.
- A. Cañada, S. Villegas, A Variational Approach to Lyapunov Type Inequalities, Springer-Briefs in Mathematics, Springer, Cham, 2015.
- A. Chidouh, D.F.M. Torres, A generalized Lyapunov's inequality for a fractional boundary value problem, J. Comput. Appl. Math. 312 (2017), 192-197.
- R.A.C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal. 16 (2013) 4, 978-984.
- R.A.C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl. 412 (2014) 2, 1058-1063.
- R.A.C. Ferreira, Some discrete fractional Lyapunov-type inequalities, Fract. Differ. Calc. 5 (2015) 1, 87-92.
- C.S. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equ. 5 (2010) 2, 195-216.
- C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.
- A. Guezane-Lakoud, R. Khaldi, D.F.M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA Journal, DOI: 10.1007/s40324-017-0124-2. https://doi.org/10.1007/s40324-017-0124-2
- D.J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, vol. 5, Academic Press, Boston, MA, 1988.
- M. Hashizume, Minimization problem related to a Lyapunov inequality, J. Math. Anal. Appl. 432 (2015) 1, 517-530.
- T. Kaczorek, Minimum energy control of fractional positive electrical circuits with bounded inputs, Circuits Systems Signal Process. 35 (2016), 1815-1829.
- A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 9 (1907), 203-474.
- T. Sun, J. Liu, Lyapunov inequality for dynamic equation with order \(n+1\) on time scales, J. Dyn. Syst. Geom. Theor. 13 (2015) 1, 95-101.
- Amar Chidouh
- Houari Boumedienne University, Laboratory of Dynamic Systems, Algiers, Algeria
- Delfim F. M. Torres
- Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
- Communicated by Marek Galewski.
- Received: 2016-11-15.
- Revised: 2017-05-31.
- Accepted: 2017-06-18.
- Published online: 2017-11-13.