Opuscula Math. 37, no. 6 (2017), 779-794
http://dx.doi.org/10.7494/OpMath.2017.37.6.779
Opuscula Mathematica
On the Steklov problem involving the p(x)-Laplacian with indefinite weight
Khaled Ben Ali
Abdeljabbar Ghanmi
Khaled Kefi
Abstract. Under suitable assumptions, we study the existence of a weak nontrivial solution for the following Steklov problem involving the \(p(x)\)-Laplacian \[\begin{cases}\Delta_{p(x)}u=a(x)|u|^{p(x)-2}u \quad \text{in }\Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}=\lambda V(x)|u|^{q(x)-2}u \quad \text{on }\partial \Omega.\end{cases}\] Our approach is based on min-max method and Ekeland's variational principle.
Keywords: \(p(x)\)-Laplace operator, Steklov problem, variable exponent Sobolev spaces, variational methods, Ekeland's variational principle.
Mathematics Subject Classification: 35J48, 35J66.
- A.G. Afrouzi, A. Hadijan, S. Heidarkhani, Steklov problem involving the \(p(x)\)-Laplacian, Electron. J. Differential Equations 134 (2014), 1-11.
- M. Allaoui, A.R. El Amrouss, A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the \(p(x)\)-Laplace operator, Electron. J. Differential Equations 132 (2012), 1-12.
- S.N. Antontsev, S.I Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence uniqueness and localization properties of solutions, Nonlinear Anal. Theory Methods Appl. 60 (2005), 515-545.
- K. Benali, M. Bezzarga, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Potential Theory and Stochastics in Albac, Aurel Cornea Memorial Volume, Conference Proceedings Albac, September 4-8, 2007, Theta 2008, 21-34.
- F. Cammaroto, A. Chinnì, B. Di Bella, Multiple solutions for a Neumann problem involving the \(p(x)\)-Laplacian, Nonlinear Anal. 71 (2009), 4486-4492.
- M. Cencelij, D. Repovs, Z. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal. 119 (2015), 37-45.
- Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006), 1383-1406.
- G. D'Aguí, A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal. 75 (2012), 5612-5619.
- G. Dai, Infinitely many non-negative solutions for a Dirichlet problem involving \(p(x)\)-Laplacian, Nonlinear Anal. 71 (2009), 5840-5849.
- S.G. Deng, Eigenvalues of the \(p(x)\)-Laplacian Steklov problem, J. Math. Anal. Appl. 339 (2008), 925-937.
- D. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267-293.
- I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
- X.L. Fan, X. Han, Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\), Nonlinear Anal. 59 (2004), 173-188.
- X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\), J. Math. Anal. Appl. 262 (2001), 749-760.
- X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
- X.L. Fan, D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424-446.
- Y. Fu, Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal. 5 (2016) 2, 121-132.
- P. Harjulehto, P. Hästö, V. Latvala, Minimizers of the variable exponent, non-uniformly convex Dirichlet energy, J. Math. Pures Appl. 89 (2008), 174-197.
- C. Ji, Remarks on the existence of three solutions for the \(p(x)\)-Laplacian equations, Nonlinear Anal. 74 (2011), 2908-2915.
- L. Kong, Multiple solutions for fourth order elliptic problems with \(p(x)\)-biharmonic operators, Opuscula Math. 36 (2016) 2, 253-264.
- O. Kováčik, J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. J. 41 (1991), 592-618.
- A. Kristály, V. Rădulescu, Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010.
- R.A. Mashiyev, S. Ogras, Z. Yucedag, M. Avci, Existence and multiplicity of weak solutions for nonuniformly elliptic equations with non standard growth condition, Complex Variables and Elliptic Equations 57 (2012) 5, 579-595.
- N. Mavinga, M.N. Nkashama, Steklov spectrum and nonresonance for elliptic equations with nonlinear boundary conditions, Electron. J. Differential Equations, 19 (2010), 197-205.
- M. Mihăilescu, V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 2929-2937.
- P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI, 1986.
- V. Radulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336-369.
- V. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
- D. Repovs, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.) 13 (2015) 6, 645-661.
- M. Ružička, Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784, Springer-Verlag, Berlin, 2000.
- Z. Wei, Z. Chen, Existence results for the \(p(x)\)-Laplacian with nonlinear boundary conditions, ISRN Applied Mathematics 2012 (2012), Article ID 727398.
- Z. Yucedag, Solutions of nonlinear problems involving \(p(x)\)-Laplacian operator, Adv. Nonlinear Anal 4 (2015) 4, 285-293.
- V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv 29 (1987), 33-66.
- Khaled Ben Ali
- Jazan Technical College, P.O. Box: 241 Jazan 45952, Saudi Arabia
- University of Tunis El Manar, Faculty of Sciences, 1060 Tunis, Tunisia
- Abdeljabbar Ghanmi
- University of Jeddah, Faculty of Science and Arts, Mathematics Department, Khulais, Saudi Arabia
- University of Tunis El Manar, Faculty of Sciences, 1060 Tunis, Tunisia
- Khaled Kefi
- Northern Border University, Community College of Rafha, Saudi Arabia
- University of Tunis El Manar, Faculty of Sciences, 1060 Tunis, Tunisia
- Communicated by Vicentiu D. Radulescu.
- Received: 2017-01-06.
- Revised: 2017-01-19.
- Accepted: 2017-01-28.
- Published online: 2017-09-28.