Opuscula Math. 37, no. 5 (2017), 755-772
http://dx.doi.org/10.7494/OpMath.2017.37.5.755

 
Opuscula Mathematica

Multiplicity results for perturbed fourth-order Kirchhoff-type problems

Mohamad Reza Heidari Tavani
Ghasem Alizadeh Afrouzi
Shapour Heidarkhani

Abstract. In this paper, we investigate the existence of three generalized solutions for fourth-order Kirchhoff-type problems with a perturbed nonlinear term depending on two real parameters. Our approach is based on variational methods.

Keywords: multiplicity results, multiple solutions, fourth-order Kirchhoff-type equation, variational methods, critical point theory.

Mathematics Subject Classification: 34B15, 58E05.

Full text (pdf)

  1. G.A. Afrouzi, S. Heidarkhani, D. O'Regan, Existence of three solutions for a doubly eigenvalue fourth-order boundary value problem, Taiwanese J. Math. 15 (2011), 201-210.
  2. C.O. Alves, F.S.J.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equations of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
  3. A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305-330.
  4. S. Baraket, V. Rădulescu, Combined effects of concave-convex nonlinearities in a fourth-order problem with variable exponent, Adv. Nonlinear Stud. 16 (2016) 3, 409-419.
  5. B. Barrios, I. Peral, S. Vita, Some remarks about the summability of nonlocal nonlinear problems, Adv. Nonlinear Anal. 4 (2015) 2, 91-107.
  6. G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Eqs. 244 (2008), 3031-3059.
  7. G. Bonanno, A. Chinnì, Existence of three solutions for a perturbed two-point boundary value problem, Appl. Math. Lett. 23 (2010), 807-811.
  8. G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343 (2008), 1166-1176.
  9. G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1-10.
  10. G. D'Agui, S. Heidarkhani, G. Molica Bisci, Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional \(p\)-Laplacian, Electron. J. Qual. Theory Diff. Eqns. (2013) 24, 1-14.
  11. M. Ferrara, S. Khademloo, S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316-325.
  12. J.R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results. Math. 63 (2013), 877-889.
  13. S. Heidarkhani, Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems, Ann. Polon. Math. 107 (2013), 133-152.
  14. S. Heidarkhani, M. Ferrara, S. Khademloo, Nontrivial solutions for one-dimensional fourth order Kirchhoff-type equations, Mediterr. J. Math. 13 (2016), 217-236.
  15. S. Heidarkhani, S. Khademloo, A. Solimaninia, Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem, Portugal. Math. (N.S.) 71, Fasc. 1, (2014), 39-61.
  16. G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik, Teubner, Leipzig (1883).
  17. A.C. Lazer, P.J. Mckenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537-578.
  18. T.F. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions, Appl. Numer. Math. 47 (2003), 189-196.
  19. A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275-1287.
  20. G. Molica Bisci, P. Pizzimenti, Sequences of weak solutions for non-local elliptic problems with Dirichlet boundary condition, Proc. Edinb. Math. Soc. 257 (2014), 779-809.
  21. G. Molica Bisci, V. Rădulescu, Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math. 17 (2014), 1450001.
  22. G. Molica Bisci, V. Rădulescu, Mountain pass solutions for nonlocal equations, Annales Academiæ Scientiarum Fennicæ Mathematica 39 (2014), 579-592.
  23. G. Molica Bisci, D. Repovs, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal. 90 (2014) 3-4, 367-378.
  24. G. Molica Bisci, D. Repovs, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl. 420 (2014) 1, 167-176.
  25. G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016.
  26. L.A. Peletier, W.C. Troy, R.C.A.M. Van der Vorst, Stationary solutions of a fourth order nonlinear diffusion equation [in Russian]; Translated from the English by V.V. Kurt, Differentsialnye Uravneniya 31 (1995), 327-337; English translation in Differential Equations 31 (1995), 301-314.
  27. P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985) 1, 142-149.
  28. P. Pucci, J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal. 59 (1984) 2, 185-210.
  29. P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016) 1, 27-55.
  30. B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optimization 46 (2010), 543-549.
  31. S.M. Shahruz, S.A. Parasurama, Suppression of vibration in the axially moving Kirchhoff string by boundary control, Journal of Sound and Vibration 214 (1998), 567-575.
  32. F. Wang, Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl. (2012), 2012:6.
  33. F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff-type, J. Math. Anal. Appl. 409 (2014), 140-146.
  • Mohamad Reza Heidari Tavani
  • Islamic Azad University, Science and Research Branch, Department of Mathematics, Tehran, Iran
  • Ghasem Alizadeh Afrouzi
  • Islamic Azad University, Qaemshahr Branch, Department of Mathematics, Qaemshahr, Iran
  • Shapour Heidarkhani
  • Razi University, Faculty of Sciences, Department of Mathematics, 67149 Kermanshah, Iran
  • Communicated by Vicentiu D. Radulescu.
  • Received: 2016-09-25.
  • Revised: 2016-12-27.
  • Accepted: 2016-12-28.
  • Published online: 2017-07-05.
Opuscula Mathematica - cover

Cite this article as:
Mohamad Reza Heidari Tavani, Ghasem Alizadeh Afrouzi, Shapour Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff-type problems, Opuscula Math. 37, no. 5 (2017), 755-772, http://dx.doi.org/10.7494/OpMath.2017.37.5.755

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.