Opuscula Math. 37, no. 5 (2017), 755-772
http://dx.doi.org/10.7494/OpMath.2017.37.5.755
Opuscula Mathematica
Multiplicity results for perturbed fourth-order Kirchhoff-type problems
Mohamad Reza Heidari Tavani
Ghasem Alizadeh Afrouzi
Shapour Heidarkhani
Abstract. In this paper, we investigate the existence of three generalized solutions for fourth-order Kirchhoff-type problems with a perturbed nonlinear term depending on two real parameters. Our approach is based on variational methods.
Keywords: multiplicity results, multiple solutions, fourth-order Kirchhoff-type equation, variational methods, critical point theory.
Mathematics Subject Classification: 34B15, 58E05.
- G.A. Afrouzi, S. Heidarkhani, D. O'Regan, Existence of three solutions for a doubly eigenvalue fourth-order boundary value problem, Taiwanese J. Math. 15 (2011), 201-210.
- C.O. Alves, F.S.J.A. Corrêa, T.F. Ma, Positive solutions for a quasilinear elliptic equations of Kirchhoff type, Comput. Math. Appl. 49 (2005), 85-93.
- A. Arosio, S. Panizzi, On the well-posedness of the Kirchhoff string, Trans. Amer. Math. Soc. 348 (1996), 305-330.
- S. Baraket, V. Rădulescu, Combined effects of concave-convex nonlinearities in a fourth-order problem with variable exponent, Adv. Nonlinear Stud. 16 (2016) 3, 409-419.
- B. Barrios, I. Peral, S. Vita, Some remarks about the summability of nonlocal nonlinear problems, Adv. Nonlinear Anal. 4 (2015) 2, 91-107.
- G. Bonanno, P. Candito, Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. Differ. Eqs. 244 (2008), 3031-3059.
- G. Bonanno, A. Chinnì, Existence of three solutions for a perturbed two-point boundary value problem, Appl. Math. Lett. 23 (2010), 807-811.
- G. Bonanno, B. Di Bella, A boundary value problem for fourth-order elastic beam equations, J. Math. Anal. Appl. 343 (2008), 1166-1176.
- G. Bonanno, S.A. Marano, On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. Anal. 89 (2010), 1-10.
- G. D'Agui, S. Heidarkhani, G. Molica Bisci, Multiple solutions for a perturbed mixed boundary value problem involving the one-dimensional \(p\)-Laplacian, Electron. J. Qual. Theory Diff. Eqns. (2013) 24, 1-14.
- M. Ferrara, S. Khademloo, S. Heidarkhani, Multiplicity results for perturbed fourth-order Kirchhoff type elliptic problems, Appl. Math. Comput. 234 (2014), 316-325.
- J.R. Graef, S. Heidarkhani, L. Kong, A variational approach to a Kirchhoff-type problem involving two parameters, Results. Math. 63 (2013), 877-889.
- S. Heidarkhani, Infinitely many solutions for systems of n two-point Kirchhoff-type boundary value problems, Ann. Polon. Math. 107 (2013), 133-152.
- S. Heidarkhani, M. Ferrara, S. Khademloo, Nontrivial solutions for one-dimensional fourth order Kirchhoff-type equations, Mediterr. J. Math. 13 (2016), 217-236.
- S. Heidarkhani, S. Khademloo, A. Solimaninia, Multiple solutions for a perturbed fourth-order Kirchhoff type elliptic problem, Portugal. Math. (N.S.) 71, Fasc. 1, (2014), 39-61.
- G. Kirchhoff, Vorlesungen über mathematische Physik: Mechanik, Teubner, Leipzig (1883).
- A.C. Lazer, P.J. Mckenna, Large amplitude periodic oscillations in suspension bridges: Some new connections with nonlinear analysis, SIAM Rev. 32 (1990), 537-578.
- T.F. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions, Appl. Numer. Math. 47 (2003), 189-196.
- A. Mao, Z. Zhang, Sign-changing and multiple solutions of Kirchhoff type problems without the P.S. condition, Nonlinear Anal. 70 (2009), 1275-1287.
- G. Molica Bisci, P. Pizzimenti, Sequences of weak solutions for non-local elliptic problems with Dirichlet boundary condition, Proc. Edinb. Math. Soc. 257 (2014), 779-809.
- G. Molica Bisci, V. Rădulescu, Applications of local linking to nonlocal Neumann problems, Commun. Contemp. Math. 17 (2014), 1450001.
- G. Molica Bisci, V. Rădulescu, Mountain pass solutions for nonlocal equations, Annales Academiæ Scientiarum Fennicæ Mathematica 39 (2014), 579-592.
- G. Molica Bisci, D. Repovs, Existence and localization of solutions for nonlocal fractional equations, Asymptot. Anal. 90 (2014) 3-4, 367-378.
- G. Molica Bisci, D. Repovs, Higher nonlocal problems with bounded potential, J. Math. Anal. Appl. 420 (2014) 1, 167-176.
- G. Molica Bisci, V. Rădulescu, R. Servadei, Variational Methods for Nonlocal Fractional Problems, Encyclopedia of Mathematics and its Applications, vol. 162, Cambridge University Press, Cambridge, 2016.
- L.A. Peletier, W.C. Troy, R.C.A.M. Van der Vorst, Stationary solutions of a fourth order nonlinear diffusion equation [in Russian]; Translated from the English by V.V. Kurt, Differentsialnye Uravneniya 31 (1995), 327-337; English translation in Differential Equations 31 (1995), 301-314.
- P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985) 1, 142-149.
- P. Pucci, J. Serrin, Extensions of the mountain pass theorem, J. Funct. Anal. 59 (1984) 2, 185-210.
- P. Pucci, M. Xiang, B. Zhang, Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations, Adv. Nonlinear Anal. 5 (2016) 1, 27-55.
- B. Ricceri, On an elliptic Kirchhoff-type problem depending on two parameters, J. Global Optimization 46 (2010), 543-549.
- S.M. Shahruz, S.A. Parasurama, Suppression of vibration in the axially moving Kirchhoff string by boundary control, Journal of Sound and Vibration 214 (1998), 567-575.
- F. Wang, Y. An, Existence and multiplicity of solutions for a fourth-order elliptic equation, Bound. Value Probl. (2012), 2012:6.
- F. Wang, M. Avci, Y. An, Existence of solutions for fourth order elliptic equations of Kirchhoff-type, J. Math. Anal. Appl. 409 (2014), 140-146.
- Mohamad Reza Heidari Tavani
- Islamic Azad University, Science and Research Branch, Department of Mathematics, Tehran, Iran
- Ghasem Alizadeh Afrouzi
- Islamic Azad University, Qaemshahr Branch, Department of Mathematics, Qaemshahr, Iran
- Shapour Heidarkhani
- Razi University, Faculty of Sciences, Department of Mathematics, 67149 Kermanshah, Iran
- Communicated by Vicentiu D. Radulescu.
- Received: 2016-09-25.
- Revised: 2016-12-27.
- Accepted: 2016-12-28.
- Published online: 2017-07-05.