Opuscula Math. 37, no. 5 (2017), 725-734
http://dx.doi.org/10.7494/OpMath.2017.37.5.725

 
Opuscula Mathematica

On 3-total edge product cordial connected graphs

Jaroslav Ivančo

Abstract. A \(k\)-total edge product cordial labeling is a variant of the well-known cordial labeling. In this paper we characterize connected graphs of order at least 15 admitting a 3-total edge product cordial labeling.

Keywords: 3-total edge product cordial labelings, 3-TEPC graphs.

Mathematics Subject Classification: 05C78.

Full text (pdf)

  1. A. Azaizeh, R. Hasni, A. Ahmad, G.-C. Lau, 3-total edge product cordial labeling of graphs, Far East Journal of Mathematical Sciences 96 (2015), 193-209.
  2. I. Cahit, Cordial Graphs: A weaker version of graceful and harmonious graphs, Ars Combin. 23 (1987), 201-207.
  3. J.A. Gallian, A dynamic survey of graph labeling, Electronic J. Combinatorics (2016), #DS6.
  4. D. König, Graphen und Matrizen, Mat. Fiz. Lapok 38 (1931), 116-119.
  5. J. Ivančo, On \(k\)-total edge product cordial graphs, Australas. J. Combin. 67 (2017), 476-485.
  6. R. Ponraj, M. Sundaram, M. Sivakumar, \(k\)-total product cordial labeling of graphs, Appl. Appl. Math.: An Inter. J. 7 (2012), 708-716.
  7. R. Ponraj, M. Sivakumar, M. Sundaram, On 3-total product cordial graphs, Int. Math. Forum 7 (2012), no. 29-32, 1537-1546.
  8. R. Ponraj, M. Sivakumar, M. Sundaram, New families of 3-total product cordial graphs, Inter. J. Math. Archive 3 (2012) 5, 1985-1990.
  9. M. Sivakumar, On 4-total product cordiality of some corona graphs, Internat. J. Math. Combin. 3 (2016), 99-106.
  10. M. Sundaram, R. Ponraj, S. Somasundaram, Total product cordial labeling of graphs, Bull. Pure Appl. Sci. Sect. E, Math. Stat. 25 (2006), 199-203.
  11. A. Tenguria, R. Verma, 3-total super product cordial labeling for some graphs, Internat. J. Science and Research 4 (2015) 2, 557-559.
  12. S.K. Vaidya, C.M. Barasara, Total edge product cordial labeling of graphs, Malaya Journal of Mathematik 3(1) (2013), 55-63.
  13. S.K. Vaidya, C.M. Barasara, On total edge product cordial labeling, Internat. J. Math. Scientific Comput. 3(2) (2013), 12-16.
  14. S.K. Vaidya, C.M. Barasara, On embedding and NP-complete problems of equitable labelings, IOSR-JM 11 (2015), 80-85.
  • Jaroslav Ivančo
  • P. J. Šafárik University, Institute of Mathematics, Jesenná 5, 041 54 Košice, Slovakia
  • Communicated by Dalibor Fronček.
  • Received: 2016-02-02.
  • Revised: 2017-01-26.
  • Accepted: 2017-01-27.
  • Published online: 2017-07-05.
Opuscula Mathematica - cover

Cite this article as:
Jaroslav Ivančo, On 3-total edge product cordial connected graphs, Opuscula Math. 37, no. 5 (2017), 725-734, http://dx.doi.org/10.7494/OpMath.2017.37.5.725

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.