Opuscula Math. 37, no. 5 (2017), 665-703
http://dx.doi.org/10.7494/OpMath.2017.37.5.665
Opuscula Mathematica
Semicircular elements induced by p-adic number fields
Ilwoo Cho
Palle E. T. Jorgensen
Abstract. In this paper, we study semicircular-like elements, and semicircular elements induced by \(p\)-adic analysis, for each prime \(p\). Starting from a \(p\)-adic number field \(\mathbb{Q}_{p}\), we construct a Banach \(*\)-algebra \(\mathfrak{LS}_{p}\), for a fixed prime \(p\), and show the generating elements \(Q_{p,j}\) of \(\mathfrak{LS}_{p}\) form weighted-semicircular elements, and the corresponding scalar-multiples \(\Theta_{p,j}\) of \(Q_{p,j}\) become semicircular elements, for all \(j\in\mathbb{Z}\). The main result of this paper is the very construction of suitable linear functionals \(\tau_{p,j}^{0}\) on \(\mathfrak{LS}_{p}\), making \(Q_{p,j}\) be weighted-semicircular, for all \(j\in\mathbb{Z}\).
Keywords: free probability, primes, \(p\)-adic number fields \(\mathbb{Q}_{p}\), Hilbert-space representations, \(C^{*}\)-algebras, wighted-semicircular elements, semicircular elements.
Mathematics Subject Classification: 05E15, 11R47, 11R56, 46L10, 46L40, 47L15, 47L30, 47L55.
- S. Albeverio, P.E.T. Jorgensen, A.M. Paolucci, Multiresolution wavelet analysis of integer scale Bessel functions, J. Math. Phys. 48 (2007) 7, 073516, 24.
- S. Albeverio, P.E.T. Jorgensen, A.M. Paolucci, On fractional Brownian motion and wavelets, Complex Anal. Oper. Theory 6 (2012) 1, 33-63.
- D. Alpay, P.E.T. Jorgensen, Spectral theory for Gaussian processes: reproducing kernels, boundaries, and \(L_2\)-wavelet generators with fractional scales, Numer. Funct. Anal. Optim. 36 (2015) 10, 1239-1285.
- D. Alpay, P.E.T. Jorgensen, D. Kimsey, Moment problems in an infinite number of variables, Infin. Dimens. Anal. Quantum Probab. Relat. Top. Prob. 18 (2015) 4, 1550024.
- D. Alpay, P.E.T. Jorgensen, D. Levanony, On the equivalence of probability spaces, J. Theo. Prob. (2016), to appear.
- D. Alpay, P.E.T. Jorgensen, G. Salomon, On free stochastic processes and their derivatives, Stochastic Process. Appl. 124 (2014) 10, 3392-3411.
- I. Cho, Free distributional data of arithmetic functions and corresponding generating functions, Complex Anal. Oper. Theory 8 (2014) 2, 537-570.
- I. Cho, Dynamical systems on arithmetic functions determined by prims, Banach J. Math. Anal. 9 (2015) 1, 173-215.
- I. Cho, Free product \(C^*\)-algebras induced by \(*\)-algebras over \(p\)-adic number fields (2016), submitted.
- I. Cho, T. Gillespie, Free probability on the Hecke algebra, Complex Anal. Oper. Theory 9 (2015), 1491-1531.
- I. Cho, P.E.T. Jorgensen, Krein-Space Operators Induced by Dirichlet Characters, Special Issues: Contemp. Math.: Commutative and Noncommutative Harmonic Analysis and Applications, Amer. Math. Soc. (2014), 3-33.
- A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994.
- A. Connes, Hecke algebras, type III-factors, and phase transitions with spontaneous symmetry breaking in number theory, Selecta Math. (New Series) 1 (1995) 3, 411-457.
- A. Connes, Trace formula in noncommutative geometry and the zeroes of the Riemann zeta functions, arXiv:math/9811068 [math.NT] (1998).
- T. Gillespie, Superposition of zeroes of automorphic \(L\)-functions and functoriality, University of Iowa, PhD Thesis (2010).
- T. Gillespie, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
- P.E.T. Jorgensen, Operators and Representation Theory: Canonical Models for Algebras of Operators Arising in Quantum Mechanics, 2nd ed., Dover Publications, 2008.
- P.E.T. Jorgensen, A.M. Paolucci, Wavelets in mathematical physics: \(q\)-oscillators, J. Phys. A. 36 (2003) 23, 6483-6494.
- P.E.T. Jorgensen, A.M. Paolucci, States on the Cuntz algebras and \(p\)-adic random walks, J. Aust. Math. Soc. 90 (2011) 2, 197-211.
- P.E.T. Jorgensen, A.M. Paolucci, \(q\)-frames and Bessel functions, Numer. Funct. Anal. Optim. 33 (2012) 7-9, 1063-1069.
- P.E.T. Jorgensen, A.M. Paolucci, Markov measures and extended zeta functions, J. Appl. Math. Comput. 38 (2012) 1-2, 305-323.
- F. Radulescu, Random matrices, amalgamated free products and subfactors of the \(C^*\)-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
- F. Radulescu, Conditional expectations, traces, angles between spaces and representations of the Hecke algebras, Lib. Math. 33 (2013) 2, 65-95.
- F. Radulescu, Free group factors and Hecke operators, notes taken by N. Ozawa, Proceedings of the 24th Conference in Operator Theory, Theta Advanced Series in Math., Theta Foundation, 2014.
- R. Speicher, Multiplicative functions on the lattice of non-crossing partitions and free convolution, Math. Ann. 298 (1994), 611-628.
- R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
- R. Speicher, A conceptual proof of a basic result in the combinatorial approach to freeness, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 3 (2000), 213-222.
- R. Speicher, P. Neu, Physical Applications of Freeness, XII-th International Congress of Math. Phy. (ICMP '97), International Press, 1999, 261-266.
- V.S. Vladimirov, \(p\)-adic quantum mechanics, Comm. Math. Phys. 123 (1989) 4, 659-676.
- V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
- D. Voiculescu, Free probability and the von Neumann algebras of free groups, Rep. Math. Phys. 55 (2005) 1, 127-133.
- D. Voiculescu, Symmetries arising from free probability theory, Frontiers in Number Theory, Physics and Geometry (2006), 231-243.
- D. Voiculescu, Aspects of free analysis, Jpn. J. Math. 3 (2008) 2, 163-183.
- D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, 1992.
- Ilwoo Cho
- St. Ambrose University, Department of Mathematics and Statistics, 421 Ambrose Hall, 518 W. Locust St., Davenport, Iowa, 52803, USA
- Palle E. T. Jorgensen
- The University of Iowa, Department of Mathematics, 14 MacLean Hall, Iowa City, IA 52242-1419, USA
- Communicated by P.A. Cojuhari.
- Received: 2016-10-10.
- Accepted: 2016-12-04.
- Published online: 2017-07-05.