Opuscula Math. 37, no. 4 (2017), 589-595
http://dx.doi.org/10.7494/OpMath.2017.37.4.589

 
Opuscula Mathematica

Toward Wojda's conjecture on digraph packing

Jerzy Konarski
Andrzej Żak

Abstract. Given a positive integer \(m\leq n/2\), Wojda conjectured in 1985 that if \(D_1\) and \(D_2\) are digraphs of order \(n\) such that \(|A(D_1)|\leq n-m\) and \(|A(D_2)|\leq 2n-\lfloor n/m\rfloor-1\) then \(D_1\) and \(D_2\) pack. The cases when \(m=1\) or \(m = n/2\) follow from known results. Here we prove the conjecture for \(m\geq\sqrt{8n}+418275\).

Keywords: packing, digraph, size.

Mathematics Subject Classification: 05C35.

Full text (pdf)

  1. A. Benhocine, H.J. Veldman, A.P. Wojda, Packing of digraphs, Ars Combin. 22 (1986), 43-49.
  2. E. Györi, A. Kostochka, A. McConvey, D. Yager, Toward Żak's conjecture on graph packing, J. Combin. 7 (2016) 2, 307-340.
  3. A.P. Wojda, Research problems (Problem 69), Discrete Math. 57 (1985), 209-210.
  4. A.P. Wojda, M. Woźniak, Packing and extremal digraphs, Ars Combin. 20 B (1985), 71-73.
  • Jerzy Konarski
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Andrzej Żak
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Communicated by Gyula O.H. Katona.
  • Received: 2016-07-22.
  • Revised: 2016-11-14.
  • Accepted: 2016-11-15.
  • Published online: 2017-04-28.
Opuscula Mathematica - cover

Cite this article as:
Jerzy Konarski, Andrzej Żak, Toward Wojda's conjecture on digraph packing, Opuscula Math. 37, no. 4 (2017), 589-595, http://dx.doi.org/10.7494/OpMath.2017.37.4.589

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.