Opuscula Math. 37, no. 4 (2017), 557-566
http://dx.doi.org/10.7494/OpMath.2017.37.4.557
Opuscula Mathematica
A note on incomplete regular tournaments with handicap two of order n≡8(mod 16)
Abstract. A \(d\)-handicap distance antimagic labeling of a graph \(G=(V,E)\) with \(n\) vertices is a bijection \(f:V\to \{1,2,\ldots ,n\}\) with the property that \(f(x_i)=i\) and the sequence of weights \(w(x_1),w(x_2),\ldots,w(x_n)\) (where \(w(x_i)=\sum_{x_i x_j\in E}f(x_j)\)) forms an increasing arithmetic progression with common difference \(d\). A graph \(G\) is a \(d\)-handicap distance antimagic graph if it allows a \(d\)-handicap distance antimagic labeling. We construct a class of \(k\)-regular \(2\)-handicap distance antimagic graphs for every order \(n\equiv8\pmod{16}\), \(n\geq56\) and \(6\leq k\leq n-50\).
Keywords: incomplete tournaments, handicap tournaments, distance magic labeling, handicap labeling.
Mathematics Subject Classification: 05C78.
- D. Froncek, Fair incomplete tournaments with odd number of teams and large number of games, Congr. Numer. 187 (2007), 83-89.
- D. Froncek, Handicap distance antimagic graphs and incomplete tournaments, AKCE Int. J. Graphs Comb. 10 (2013) 2, 119-127.
- D. Froncek, Magic rectangle sets of odd order, Australas. J. Combin. 67 (2017) 2, 345-351.
- D. Froncek, Regular handicap graphs of odd order, J. Combin. Math. Combin. Comput., to appear.
- D. Froncek, Regular incomplete tournaments with handicap two, Congr. Numer. 227 (2016), 277-286.
- D. Froncek, Full spectrum of regular incomplete \(2\)-handicap tournaments of order \(n\equiv0\pmod{16}\), submitted.
- D. Fronček, P. Kovář, T. Kovářová, Fair incomplete tournaments, Bull. of ICA 48 (2006), 31-33.
- D. Fronček, A. Shepanik, P. Kovář, M. Kravčenko, A. Silber, T. Kovářová, B. Krajc, On regular handicap graphs of even order, Electron. Notes Discrete Math., to appear.
- T.R. Hagedorn, On the existence of magic \(n\)-dimensional rectangles, Discrete Math. 207 (1999), 53-63.
- T. Harmuth, Ueber magische Quadrate und ähnliche Zahlenfiguren, Arch. Math. Phys. 66 (1881), 286-313.
- T. Harmuth, Ueber magische Rechtecke mit ungeraden Seitenzahlen, Arch. Math. Phys. 66 (1881), 413-447.
- T. Kovarova, On regular handicap graphs, personal communication.
- Dalibor Froncek
- University of Minnesota, Duluth, Department of Mathematics and Statistics, 1117 University Dr., Duluth, MN 55812, U.S.A.
- Communicated by Gyula O.H. Katona.
- Received: 2016-09-07.
- Revised: 2017-01-30.
- Accepted: 2017-01-31.
- Published online: 2017-04-28.