Opuscula Math. 37, no. 3 (2017), 457-472
http://dx.doi.org/10.7494/OpMath.2017.37.3.457
Opuscula Mathematica
On criteria for algebraic independence of collections of functions satisfying algebraic difference relations
Abstract. This paper gives conditions for algebraic independence of a collection of functions satisfying a certain kind of algebraic difference relations. As applications, we show algebraic independence of two collections of special functions: (1) Vignéras' multiple gamma functions and derivatives of the gamma function, (2) the logarithmic function, \(q\)-exponential functions and \(q\)-polylogarithm functions. In a similar way, we give a generalization of Ostrowski's theorem.
Keywords: difference algebra, systems of algebraic difference equations, algebraic independence, Vignéras' multiple gamma functions, \(q\)-polylogarithm functions.
Mathematics Subject Classification: 12H10, 39A10, 39A13.
- J. Ax, On Schanuel's conjectures, Ann. of Math. 93 (1971), 252-268.
- D.M. Bradley, Multiple \(q\)-zeta values, J. Algebra 283 (2005), 752-798.
- R.M. Cohn, Difference Algebra, Interscience Publishers John Wiley & Sons, New York, London, Sydney, 1965.
- G. Gasper, M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications, vol. 96, Cambridge University Press, Cambridge, 2nd ed., 2004.
- A. Grothendieck, J. Dieudonné, Éléments de géométrie algébrique, IV, Publ. Math. Inst. Hautes Études Sci. 20 (1964), 5-259.
- C. Hardouin, Hypertranscendance des systèmes aux différences diagonaux, Compos. Math. 144 (2008), 565-581.
- J. Johnson, Kähler differentials and differential algebra, Ann. of Math. 89 (1969), 92-98.
- V. Kac, P. Cheung, Quantum Calculus, Universitext, Springer-Verlag, New York, 2002.
- E.R. Kolchin, Algebraic groups and algebraic dependence, Amer. J. Math. 90 (1968), 1151-1164.
- A. Levin, Difference Algebra, Algebra and Applications, vol. 8, Springer, New York, 2008.
- T. Mansour, Identities for sums of a \(q\)-analogue of polylogarithm functions, Lett. Math. Phys. 87 (2009), 1-18.
- M. Nishizawa, Generalized Hölder's theorem for Vignéras' multiple gamma function, Tokyo J. Math. 24 (2001), 323-329.
- H. Ogawara, Another proof of Ostrowski-Kolchin-Hardouin theorem in difference algebra, Keio SFC Journal 13 (2013), 97-100.
- A. Ostrowski, Sur les relations algébriques entre les intégrales indéfinies, Acta Math. 78 (1946), 315-318.
- M. Rosenlicht, On Liouville's theory of elementary functions, Pacific J. Math. 65 (1976), 485-492.
- M.F. Vignéras, L'équation fonctionnelle de la fonction zêta de Selberg du groupe modulaire \(\operatorname{PSL}(2,\mathbf{Z})\), [in:] Journées Arithmétiques de Luminy (Colloq. Internat. CNRS, Centre Univ. Luminy, Luminy, 1978), vol. 61 of Astérisque, Soc. Math. France, Paris, 1979, pp. 235-249.
- J. Zhao, Multiple \(q\)-zeta functions and multiple \(q\)-polylogarithms, Ramanujan J. 14 (2007), 189-221.
- Hiroshi Ogawara
- Kumamoto University, Graduate School of Science and Technology, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
- Communicated by P.A. Cojuhari.
- Received: 2016-05-30.
- Revised: 2016-10-19.
- Accepted: 2016-10-27.
- Published online: 2017-01-30.