Opuscula Math. 37, no. 2 (2017), 313-325
http://dx.doi.org/10.7494/OpMath.2017.37.2.313
Opuscula Mathematica
Control system defined by some integral operator
Abstract. In the paper we consider a nonlinear control system governed by the Volterra integral operator. Using a version of the global implicit function theorem we prove that the control system under consideration is well-posed and robust, i.e. for any admissible control \(u\) there exists a uniquely defined trajectory \(x_{u}\) which continuously depends on control \(u\) and the operator \(u\mapsto x_{u}\) is continuously differentiable. The novelty of this paper is, among others, the application of the Bielecki norm in the space of solutions which allows us to weaken standard assumptions.
Keywords: Volterra equation, implicit function theorem, sensitivity.
Mathematics Subject Classification: 45D05, 34A12, 47J07, 46T20.
- A. Bielecki, Une remarque sur l'application de la méthode de Banach-Cocciopoli-Tichonov dans la théorie de l'équation \(s=f(x,y,z,p,q)\), Bull. Pol. Acad. Sci. Math. 4 (1956), 265-268.
- D. Bors, Stability of nonlinear Urysohn integral equations via global diffeomorphisms and implicit function theorems, J. Integral Equations Appl. 27 (2015) 3, 343-366.
- D. Bors, A. Skowron, S. Walczak, Systems described by Volterra type integral operators, Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 8, 2401-2416.
- O. Diekmann, Limiting behaviour in an epidemic model, Nonlinear Anal. 1 (1977) 5, 459-470.
- S. Fukuda (ed.), Emotional Engineering, vol. 3, Springer International Publishing, Cham, 2015.
- M. Galewski, M. Koniorczyk, On a global diffeomorphism between two Banach spaces and some application, Studia Sci. Math. Hungar. 52 (2015) 1, 65-86.
- M. Galewski, M. Koniorczyk, On a global implicit function theorem and some applications to integro-differential initial value problems, Acta Math. Hungar. 148 (2016) 2, 257-278.
- G. Gripenberg, S.O. Londen, O. Staffans, Volterra Integral and Functional Equations, Cambridge University Press, 1990.
- D. Idczak, A global implicit function theorem and its applications to functional equations, Discrete Contin. Dyn. Syst. Ser. B 19 (2014) 8, 2549-2556.
- D. Idczak, A. Skowron, On the diffeomorphisms between Banach and Hilbert spaces, Adv. Nonlinear Stud. 12 (2012) 1, 89-100.
- S.O. Londen, On some nonlinear Volterra integrodifferential equations, J. Differential Equations 11 (1972) 1, 169-179.
- S.O. Londen, On the asymptotic behavior of the solutions of a nonlinear volterra equation, Ann. Mat. Pura Appl. (IV) 93 (1972), 263-269.
- A.G. MacFarlane (ed.), Frequency-Response Methods in Control Systems, John Wiley & Sons Inc, New York, 1979.
- J. Mawhin, Problèmes de Dirichlet variationnels non-linéaires, Presses de l'Université de Montréal, Montréal, Québec, Canada, 1987; (see also Polish ed. Metody wariacyjne dla nieliniowych problemów Dirichleta, WNT, Warszawa, 1994).
- M. Mousa, R. Miller, A. Michel, Stability analysis of hybrid composite dynamical systems: Descriptions involving operators and differential equations, IEEE Trans. Automat. Control 31 (1986) 3, 216-226.
- A. Piskorek, Równania całkowe. Elementy teorii i zastosowania, WNT, Warszawa, 1997.
- M. Podowski, A study of nuclear reactor models with nonlinear reactivity feedbacks: Stability criteria and power overshoot evaluation, IEEE Trans. Automat. Control 31 (1986), 108-115.
- M. Renardy, W.J. Hrusa, J.A. Nohel, Mathematical Problems in Viscoelasticity, Longman Scientific & Technical and J. Wiley, New York, 1987.
- F.G. Tricomi, Integral Equations, Dover Publications, Inc., 1985.
- Marek Majewski
- Department of Mathematics and Computer Science, University of Łódź, Banacha 22, 90-238 Łódź, Poland
- Communicated by Zdzisław Jackiewicz.
- Received: 2016-06-21.
- Revised: 2016-07-19.
- Accepted: 2016-07-22.
- Published online: 2017-01-03.