Opuscula Math. 37, no. 1 (2017), 189-218
http://dx.doi.org/10.7494/OpMath.2017.37.1.189
Opuscula Mathematica
Hankel and Toeplitz operators: continuous and discrete representations
Abstract. We find a relation guaranteeing that Hankel operators realized in the space of sequences \(\mathcal{l}^2 (\mathbb{Z}_{+})\) and in the space of functions \(L^2 (\mathbb{R}_{+})\) are unitarily equivalent. This allows us to obtain exhaustive spectral results for two classes of unbounded Hankel operators in the space \(\mathcal{l}^2 (\mathbb{Z}_{+})\) generalizing in different directions the classical Hilbert matrix. We also discuss a link between representations of Toeplitz operators in the spaces \(\mathcal{l}^2 (\mathbb{Z}_{+})\) and \(L^2 (\mathbb{R}_{+})\).
Keywords: unbounded Hankel and Toeplitz operators, various representations, moment problems, generalized Hilbert matrices.
Mathematics Subject Classification: 47B25, 47B35.
- A. Böttcher, B. Silbermann, Analysis of Toeplitz operators, Springer Verlag, 2006.
- A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions, vol. 1, 2, McGraw-Hill, New York, Toronto, London, 1953.
- J.B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.
- I.M. Gel'fand, G.E. Shilov, Generalized Functions, vol. 1, Academic Press, New York, London, 1964.
- I. Gohberg, S. Goldberg, M. Kaashoek, Classes of Linear Operators, vol. 1, Birkhäuser, 1990.
- K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, New York, 1962.
- P. Koosis, Introduction to \(H_p\) Spaces, LMS, Lecture Note Series 40, Cambridge Univ. Press, 1980.
- W. Magnus, On the spectrum of Hilbert's matrix, Amer. J. Math. 72 (1950), 405-412.
- A.V. Megretskii, V.V. Peller, S.R. Treil, The inverse spectral problem for self-adjoint Hankel operators, Acta Math. 174 (1995), 241-309.
- Z. Nehari, On bounded bilinear forms, Ann. Math. 65 (1957), 153-162.
- N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. I: Hardy, Hankel, and Toeplitz, Math. Surveys and Monographs, vol. 92, Amer. Math. Soc., Providence, Rhode Island, 2002.
- V.V. Peller, Hankel Operators and Their Applications, Springer Verlag, 2003.
- M. Rosenblum, On the Hilbert matrix, I, II, Proc. Amer. Math. Soc. 9 (1958), 137-140, 581-585.
- M. Rosenblum, J. Rovnyak, Hardy Classes and Operator Theory, Oxford Univ. Press, 1985.
- H. Widom, Hankel matrices, Trans. Amer. Math. Soc. 121 (1966), 1-35.
- D.R. Yafaev, Quasi-diagonalization of Hankel operators, preprint, arXiv:1403.3941 (2014); to appear in J. d'Analyse Mathématique.
- D.R. Yafaev, Diagonalizations of two classes of unbounded Hankel operators, Bulletin Math. Sciences 4 (2014), 175-198.
- D.R. Yafaev, Criteria for Hankel operators to be sign-definite, Analysis & PDE 8 (2015), 183-221.
- D.R. Yafaev, Quasi-Carleman operators and their spectral properties, Integral Equations Operator Theory 81 (2015), 499-534.
- D.R. Yafaev, On finite rank Hankel operators, J. Funct. Anal. 268 (2015), 1808-1839.
- D.R. Yafaev, Spectral and scattering theory for differential and Hankel operator, arXiv: 1511.04683 (2015).
- D.R. Yafaev, Unbounded Hankel operator and moment problems, Integral Equations Operator Theory 85 (2016), 289-300.
- D.R. Yafaev, On semibounded Toeplitz operators, J. Oper. Theory 77 (2017), 101-112.
- D.R. Yafaev, On semibounded Wiener-Hopf operators, arXiv: 1606.01361 (2016).
- Dmitri R. Yafaev
- Université de Rennes I, IRMAR, Campus de Beaulieu, 35042 Rennes Cedex, France
- Communicated by P.A. Cojuhari.
- Received: 2016-07-11.
- Revised: 2016-09-23.
- Accepted: 2016-09-25.
- Published online: 2016-12-14.