Opuscula Math. 37, no. 1 (2017), 65-80
http://dx.doi.org/10.7494/OpMath.2017.37.1.65

 
Opuscula Mathematica

Towards theory of C-symmetries

S. Kuzhel
V. Sudilovskaya

Abstract. The concept of \(\mathcal{C}\)-symmetry originally appeared in \(\mathcal{PT}\)-symmetric quantum mechanics is studied within the Krein spaces framework.

Keywords: Krein space, \(J\)-self-adjoint operator, \(J\)-symmetric operator, Friedrichs extension, \(\mathcal{C}\)-symmetry.

Mathematics Subject Classification: 47A55, 47B25, 47A57, 81Q15.

Full text (pdf)

  1. S. Albeverio, S. Kuzhel, \(\mathcal{PT}\)-Symmetric Operators in Quantum Mechanics: Krein Spaces Methods, [in:] Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, Fabio Bagarello, Jean-Pierre Gazeau, Franciszek H. Szafraniec, Miloslav Znojil (eds), John Wiley & Sons, Inc. 2015.
  2. S. Albeverio, A. Motovilov, A. Shkalikov, Bounds on variation of spectral subspaces under \(J\)-self-adjoint perturbations, Integr. Equ. Oper. Theory 64 (2009), 455-486.
  3. Yu. Arlinskiĭ, E. Tsekanovskiĭ, M. Krein's research on semi-bounded operators, its contemporary developments, and applications, Operator Theory: Advances and Applications 190 (2009), 65-112.
  4. Yu. M. Arlinskiĭ, S. Hassi, Z. Sebestyén, H.S.V. de Snoo, On the class of extremal extensions of a nonnegative operator, Recent Advances in Operator Theory and Related Topics The Bela Szokefalvi-Nagy Memorial Volume, Operator Theory: Advances and Applications 127 (2001), 41-81.
  5. T.Ya. Azizov, I.S. Iokhvidov, Linear Operators in Spaces with Indefinite Metric, Wiley, Chichester, 1989.
  6. C.M. Bender, Introduction to \(\mathcal{PT}\)-symmetric quantum theory, Contemp. Phys. 46 (2005) 277-292.
  7. C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70 (2007), 947-1018.
  8. C.M. Bender, M. Gianfreda, Nonuniqueness of the \(\mathcal{C}\) operator in \(\mathcal{PT}\)-symmetric quantum mechanics, J. Phys. A. 46 (2013), 275306-275324.
  9. C.M. Bender, S.P. Klevansky, Nonunique \(\mathcal{C}\) operator in \(\mathcal{PT}\) quantum mechanics, Phys. Lett. A 373 (2009), 2670-2674.
  10. C.M. Bender, S. Kuzhel, Unbounded \(\mathcal{C}\)-symmetries and their nonuniqueness, J. Phys. A. 45 (2012), 444005-444019.
  11. C.M. Bender, B. Tan, Calculation of the hidden symmetry operator for a \(\mathcal{PT}\)-symmetric square well, J. Phys. A. 39 (2006), 1945-1953.
  12. B. Curgus, B. Najman, The operator \((sgn x)\frac{d^2}{dx^2}\) is similar to a selfadjoint operator in \(L_2(\mathbb{R})\), Proc. Amer. Math. Soc. 123 (1995), 1125-1128.
  13. A. Gheondea, Canonical forms of unbounded unitary operators in Krein space, Publ. RIMS Kyoto Univ. 24 (1988), 205-224.
  14. A. Grod, S. Kuzhel, V. Sudilovskaja, On operators of transition in Krein spaces, Opuscula Math. 31 (2011), 49-59.
  15. V. Kostrykin, K.A. Makarov, A.K. Motovilov, Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach, Contemp. Math. 327 (2003), 181-198.
  16. M.G. Krein, Theory of self-adjoint extensions of semibounded operators and its applications I. Math. Trans. 20 (1947), 431-495.
  17. S. Kuzhel, On pseudo-Hermitian operators with generalized \(\mathcal{C}\)-symmetries, Operator Theory: Advances and Applications 190 (2009), 128-135.
  18. H. Langer, Maximal dual pairs of invariant subspaces of \(J\)-self-adjoint operators, Mat. Zametki 7 (1970), 443-447 [in Russian].
  19. H. Langer, Spectral functions of definitizable operators in Krein spaces, Functional Analysis Proceedings of a conference held at Dubrovnik, Yugoslavia, November 2-14, 1981, Lecture Notes in Mathematics, 948, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 1-46.
  20. S.N. Naboko, Conditions for similarity to unitary and self-adjoint operators, Func. Anal. and Appl. 18 (1984) 1, 13-22.
  21. M. Tomita, Operators and operator algebras in Krein spaces, I Spectral Analysis in Pontrjagin spaces, RIMS-Kokyuuroku 398 (1980), 131-158.
  • S. Kuzhel
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • V. Sudilovskaya
  • Kyiv Vocational College, Kyiv, Ukraina
  • Communicated by Aurelian Gheondea.
  • Received: 2016-02-28.
  • Revised: 2016-09-15.
  • Accepted: 2016-10-07.
  • Published online: 2016-12-14.
Opuscula Mathematica - cover

Cite this article as:
S. Kuzhel, V. Sudilovskaya, Towards theory of C-symmetries, Opuscula Math. 37, no. 1 (2017), 65-80, http://dx.doi.org/10.7494/OpMath.2017.37.1.65

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.