Opuscula Math. 37, no. 1 (2017), 65-80
http://dx.doi.org/10.7494/OpMath.2017.37.1.65
Opuscula Mathematica
Towards theory of C-symmetries
Abstract. The concept of \(\mathcal{C}\)-symmetry originally appeared in \(\mathcal{PT}\)-symmetric quantum mechanics is studied within the Krein spaces framework.
Keywords: Krein space, \(J\)-self-adjoint operator, \(J\)-symmetric operator, Friedrichs extension, \(\mathcal{C}\)-symmetry.
Mathematics Subject Classification: 47A55, 47B25, 47A57, 81Q15.
- S. Albeverio, S. Kuzhel, \(\mathcal{PT}\)-Symmetric Operators in Quantum Mechanics: Krein Spaces Methods, [in:] Non-Selfadjoint Operators in Quantum Physics: Mathematical Aspects, Fabio Bagarello, Jean-Pierre Gazeau, Franciszek H. Szafraniec, Miloslav Znojil (eds), John Wiley & Sons, Inc. 2015.
- S. Albeverio, A. Motovilov, A. Shkalikov, Bounds on variation of spectral subspaces under \(J\)-self-adjoint perturbations, Integr. Equ. Oper. Theory 64 (2009), 455-486.
- Yu. Arlinskiĭ, E. Tsekanovskiĭ, M. Krein's research on semi-bounded operators, its contemporary developments, and applications, Operator Theory: Advances and Applications 190 (2009), 65-112.
- Yu. M. Arlinskiĭ, S. Hassi, Z. Sebestyén, H.S.V. de Snoo, On the class of extremal extensions of a nonnegative operator, Recent Advances in Operator Theory and Related Topics The Bela Szokefalvi-Nagy Memorial Volume, Operator Theory: Advances and Applications 127 (2001), 41-81.
- T.Ya. Azizov, I.S. Iokhvidov, Linear Operators in Spaces with Indefinite Metric, Wiley, Chichester, 1989.
- C.M. Bender, Introduction to \(\mathcal{PT}\)-symmetric quantum theory, Contemp. Phys. 46 (2005) 277-292.
- C.M. Bender, Making sense of non-Hermitian Hamiltonians, Rep. Prog. Phys. 70 (2007), 947-1018.
- C.M. Bender, M. Gianfreda, Nonuniqueness of the \(\mathcal{C}\) operator in \(\mathcal{PT}\)-symmetric quantum mechanics, J. Phys. A. 46 (2013), 275306-275324.
- C.M. Bender, S.P. Klevansky, Nonunique \(\mathcal{C}\) operator in \(\mathcal{PT}\) quantum mechanics, Phys. Lett. A 373 (2009), 2670-2674.
- C.M. Bender, S. Kuzhel, Unbounded \(\mathcal{C}\)-symmetries and their nonuniqueness, J. Phys. A. 45 (2012), 444005-444019.
- C.M. Bender, B. Tan, Calculation of the hidden symmetry operator for a \(\mathcal{PT}\)-symmetric square well, J. Phys. A. 39 (2006), 1945-1953.
- B. Curgus, B. Najman, The operator \((sgn x)\frac{d^2}{dx^2}\) is similar to a selfadjoint operator in \(L_2(\mathbb{R})\), Proc. Amer. Math. Soc. 123 (1995), 1125-1128.
- A. Gheondea, Canonical forms of unbounded unitary operators in Krein space, Publ. RIMS Kyoto Univ. 24 (1988), 205-224.
- A. Grod, S. Kuzhel, V. Sudilovskaja, On operators of transition in Krein spaces, Opuscula Math. 31 (2011), 49-59.
- V. Kostrykin, K.A. Makarov, A.K. Motovilov, Existence and uniqueness of solutions to the operator Riccati equation. A geometric approach, Contemp. Math. 327 (2003), 181-198.
- M.G. Krein, Theory of self-adjoint extensions of semibounded operators and its applications I. Math. Trans. 20 (1947), 431-495.
- S. Kuzhel, On pseudo-Hermitian operators with generalized \(\mathcal{C}\)-symmetries, Operator Theory: Advances and Applications 190 (2009), 128-135.
- H. Langer, Maximal dual pairs of invariant subspaces of \(J\)-self-adjoint operators, Mat. Zametki 7 (1970), 443-447 [in Russian].
- H. Langer, Spectral functions of definitizable operators in Krein spaces, Functional Analysis Proceedings of a conference held at Dubrovnik, Yugoslavia, November 2-14, 1981, Lecture Notes in Mathematics, 948, Springer-Verlag, Berlin, Heidelberg, New York, 1982, 1-46.
- S.N. Naboko, Conditions for similarity to unitary and self-adjoint operators, Func. Anal. and Appl. 18 (1984) 1, 13-22.
- M. Tomita, Operators and operator algebras in Krein spaces, I Spectral Analysis in Pontrjagin spaces, RIMS-Kokyuuroku 398 (1980), 131-158.
- S. Kuzhel
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
- V. Sudilovskaya
- Kyiv Vocational College, Kyiv, Ukraina
- Communicated by Aurelian Gheondea.
- Received: 2016-02-28.
- Revised: 2016-09-15.
- Accepted: 2016-10-07.
- Published online: 2016-12-14.