Opuscula Math. 36, no. 6 (2016), 787-797
http://dx.doi.org/10.7494/OpMath.2016.36.6.787
Opuscula Mathematica
Elementary operators - still not elementary?
Abstract. Properties of elementary operators, that is, finite sums of two-sided multiplications on a Banach algebra, have been studied under a vast variety of aspects by numerous authors. In this paper we review recent advances in a new direction that seems not to have been explored before: the question when an elementary operator is spectrally bounded or spectrally isometric. As with other investigations, a number of subtleties occur which show that elementary operators are still not elementary to handle.
Keywords: spectral isometries, elementary operators, Jordan isomorphisms.
Mathematics Subject Classification: 47B47, 46H99, 47A10, 47A65, 47B48.
- J. Alaminos, J. Extremera, A.R. Villena, Spectral preservers and approximate spectral preservers on operator algebras, Linear Alg. Appl. 496 (2016), 36-70.
- P. Ara, M. Mathieu, Local Multipliers of C*-Algebras, Springer Monographs in Mathematics, Springer-Verlag, London, 2003.
- B. Aupetit, A Primer on Spectral Theory, Springer-Verlag, New York, 1991.
- B. Aupetit, Spectral characterization of the radical in Banach or Jordan-Banach algebras, Math. Proc. Cambridge Phil. Soc. 114 (1993), 31-35.
- B. Aupetit, M. Mathieu, The continuity of Lie homomorphisms, Studia Math. 138 (2000), 193-199.
- N. Boudi, M. Mathieu, Elementary operators that are spectrally bounded, Oper. Theory Adv. Appl. 212 (2011), 1-15.
- N. Boudi, M. Mathieu, Locally quasi-nilpotent elementary operators, Oper. Matrices 8 (2014), 785-798.
- N. Boudi, M. Mathieu, More elementary operators that are spectrally bounded, J. Math. Anal. Appl. 428 (2015), 471-489.
- M. Brešar, M. Mathieu, Derivations mapping into the radical, III, J. Funct. Anal. 133 (1995), 21-29.
- C. Costara, D. Repovš, Spectral isometries onto algebras having a separating family of finite-dimensional irreducible representations, J. Math. Anal. Appl. 365 (2010), 605-608.
- R.E. Curto, M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434.
- R.E. Curto, M. Mathieu (eds), Elementary Operators and Their Applications, Proc. 3rd Int. Workshop (Belfast, 14-17 April 2009), Operator Theory Adv. Appl. 212, Springer-Verlag, Basel, 2011.
- R.J. Fleming, J.J. Jamison, Isometries on Banach Spaces: Function Algebras, Monographs and Surveys in Pure and Appl. Maths. 129, Chapman and Hall, Boca Raton, 2003.
- K. Jarosz (ed.), Function Spaces in Analysis, Proc. Seventh Conf. Function Spaces, Contemp. Math. 645 (2015).
- R.V. Kadison, Isometries of operator algebras, Annals of Math. 54 (1951), 325-338.
- Y.-F. Lin, M. Mathieu, Jordan isomorphism of purely infinite C*-algebras, Quart. J. Math. 58 (2007), 249-253.
- M. Mathieu (ed.), Proc. Int. Workshop on Elementary Operators and Applications, Blaubeuren, 9-12 June 1991, World Scientific, Singapore, 1992.
- M. Mathieu, Where to find the image of a derivation, Banach Center Publ. 30 (1994), 237-249.
- M. Mathieu, Spectrally bounded operators on simple C*-algebras II, Irish Math. Soc. Bull. 54 (2004), 33-40.
- M. Mathieu, Towards a non-selfadjoint version of Kadison's theorem, Ann. Math. Inf. 32 (2005), 87-94.
- M. Mathieu, A collection of problems on spectrally bounded operators, Asian-Eur. J. Math. 2 (2009), 487-501.
- M. Mathieu, G.J. Schick, First results on spectrally bounded operators, Studia Math. 152 (2002), 187-199.
- M. Mathieu, G.J. Schick, Spectrally bounded operators from von Neumann algebras, J. Operator Theory 49 (2003), 285-293.
- M. Mathieu, A.R. Sourour, Hereditary properties of spectral isometries, Arch. Math. 82 (2004), 222-229.
- M. Mathieu, A.R. Sourour, Spectral isometries on non-simple C*-algebras, Proc. Amer. Math. Soc. 142 (2014), 129-145.
- M. Mathieu, M. Young, Spectral isometries into commutative Banach algebras, Contemp. Math. 645 (2015), 217-222.
- M. Mathieu, M. Young, Spectrally isometric elementary operators, Studia Math. (to appear).
- V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362.
- Martin Mathieu
- Queen's University Belfast, Pure Mathematics Research Centre, Belfast BT7 1NN, Northern Ireland
- Communicated by P.A. Cojuhari.
- Received: 2016-04-17.
- Accepted: 2016-07-28.
- Published online: 2016-10-29.