Opuscula Math. 36, no. 6 (2016), 769-786
http://dx.doi.org/10.7494/OpMath.2016.36.6.769
Opuscula Mathematica
Dispersion estimates for spherical Schrödinger equations: the effect of boundary conditions
Markus Holzleitner
Aleksey Kostenko
Gerald Teschl
Abstract. We investigate the dependence of the \(L^1\to L^{\infty}\) dispersive estimates for one-dimensional radial Schrödinger operators on boundary conditions at \(0\). In contrast to the case of additive perturbations, we show that the change of a boundary condition at zero results in the change of the dispersive decay estimates if the angular momentum is positive, \(l\in (0,1/2)\). However, for nonpositive angular momenta, \(l\in (-1/2,0]\), the standard \(O(|t|^{-1/2})\) decay remains true for all self-adjoint realizations.
Keywords: Schrödinger equation, dispersive estimates, scattering.
Mathematics Subject Classification: 35Q41, 34L25, 81U30, 81Q15.
- A. Ananieva, V. Budika, To the spectral theory of the Bessel operator on a finite interval and half-line, Ukrainian Mat. Visnyk 12 (2015) 2, 160-199 [in Russian]; English transl.: J. Math. Sci. 211 (2015), 624-645.
- V.I. Bogachev, Measure Theory. I, Springer-Verlag, Berlin, Heidelberg, 2007.
- A.V. Bukhvalov, Application of methods of the theory of order-bounded operators to the theory of operators in \(L^p\)-spaces, Russ. Math. Surveys 38 (1983), 43-98.
- J. Dereziński, S. Richard, On almost homogeneous Schrödinger operators, arXiv:1604.03340.
- I. Egorova, E. Kopylova, V. Marchenko, G. Teschl, Dispersion estimates for one-dimensional Schrödinger and Klein-Gordon equations revisited, Russ. Math. Surveys 71 (2016), 391-415.
- A. Erdelyi, Tables of Integral Transforms, vol. 1, McGraw-Hill, New York, 1954.
- W.N. Everitt, H. Kalf, The Bessel differential equation and the Hankel transform, J. Comp. Appl. Math. 208 (2007), 3-19.
- F. Gesztesy, B. Simon, G. Teschl, Zeros of the Wronskian and renormalized oscillation theory, Amer. J. Math. 118 (1996), 571-594.
- M. Goldberg, W. Schlag, Dispersive estimates for Schrödinger operators in dimensions one and three, Comm. Math. Phys. 251 (2004), 157-178.
- E. Kopylova, Dispersion estimates for Schrödinger and Klein-Gordon equation, Russ. Math. Surveys 65 (2010) 1, 95-142.
- A. Kostenko, A. Sakhnovich, G. Teschl, Weyl-Titchmarsh theory for Schrödinger operators with strongly singular potentials, Int. Math. Res. Not. 2012 (2012), 1699-1747.
- A. Kostenko, G. Teschl, Spectral asymptotics for perturbed spherical Schrödinger operators and applications to quantum scattering, Comm. Math. Phys. 322 (2013), 255-275.
- A. Kostenko, G. Teschl, J.H. Toloza, Dispersion estimates for spherical Schrödinger equations, Ann. Henri Poincaré 17 (2016), 3147-3176.
- H. Kovařík, F. Truc, Schrödinger operators on a half-line with inverse square potentials, Math. Model. Nat. Phenom. 9 (2014), 170-176.
- E. Liflyand, S. Samko, R. Trigub, The Wiener algebra of absolutely convergent Fourier integrals: an overview, Anal. Math. Phys. 2 (2012), 1-68.
- E. Liflyand, R. Trigub, Conditions for the absolute convergence of Fourier integrals, J. Approx. Theory 163 (2011), 438-459.
- F.W.J. Olver et al. (eds), NIST Handbook of Mathematical Functions, Cambridge University Press, Cambridge, 2010.
- W. Schlag, Dispersive estimates for Schrödinger operators: a survey, [in:] Mathematical aspects of nonlinear dispersive equations, Ann. Math. Stud. 163, Princeton Univ. Press, Princeton, NJ, 2007, 255-285.
- E.M. Stein, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Series 43, Princeton University Press, Princeton, NJ, 1993.
- G. Teschl, Mathematical Methods in Quantum Mechanics; With Applications to Schrödinger Operators, 2nd ed., Amer. Math. Soc., Rhode Island, 2014.
- G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1944.
- R. Weder, \(L^p-L^{\dot{p}}\) estimates for the Schrödinger equation on the line and inverse scattering for the nonlinear Schrödinger equation with a potential, J. Funct. Anal. 170 (2000), 37-68.
- R. Weder, The \(L^p-L^{\dot{p}}\) estimates for the Schrödinger equation on the half-line, J. Math. Anal. Appl. 281 (2003), 233-243.
- Markus Holzleitner
- University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
- Aleksey Kostenko
- University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
- Gerald Teschl
- University of Vienna, Faculty of Mathematics, Oskar-Morgenstern-Platz 1, 1090 Wien, Austria
- International Erwin Schrödinger Institute for Mathematical Physics, Boltzmanngasse 9, 1090 Wien, Austria
- Communicated by S.N. Naboko.
- Received: 2016-01-07.
- Revised: 2016-05-12.
- Accepted: 2016-05-12.
- Published online: 2016-10-29.