Opuscula Math. 36, no. 6 (2016), 695-716

Opuscula Mathematica

Characterizations of rectangular (para)-unitary rational functions

Daniel Alpay
Palle Jorgensen
Izchak Lewkowicz

Abstract. We here present three characterizations of not necessarily causal, rational functions which are (co)-isometric on the unit circle: (i) through the realization matrix of Schur stable systems, (ii) the Blaschke-Potapov product, which is then employed to introduce an easy-to-use description of all these functions with dimensions and McMillan degree as parameters, (iii) through the (not necessarily reducible) Matrix Fraction Description (MFD). In cases (ii) and (iii) the poles of the rational functions involved may be anywhere in the complex plane, but the unit circle (including both zero and infinity). A special attention is devoted to exploring the gap between the square and rectangular cases.

Keywords: isometry, coisometry, lossless, all-pass, realization, gramians, matrix fraction description, Blaschke-Potapov product.

Mathematics Subject Classification: 20H05, 26C15, 47A48, 47A56, 51F25, 93B20, 94A05, 94A08, 94A11, 94A12.

Full text (pdf)

  1. D. Alpay, I. Gohberg, Unitary rational matrix functions, [in:] I. Gohberg (ed.), Topics in interpolation theory of rational matrix-valued functions, Operator Theory: Advances and Applications, vol. 33, Birkhäuser Verlag, Basel, 1988, 175-222.
  2. D. Alpay, I. Gohberg, On Orthogonal Matrix Polynomial, [in:] I. Gohberg (ed.), Orthogonal Matrix-Valued Polynomials and Applications, Operator Theory: Advances and Applications, vol. 34, Birkhäuser Verlag, Basel, 1988, 25-46.
  3. D. Alpay, P. Jorgensen, I. Lewkowicz, Extending Wavelet filters. Infinite Dimensions, the Non-Rational Case and Indefinite-Inner Product Spaces, Excursions in Harmonic Analysis Book Series, vol. 2, Chapter 5, Springer-Birkhäuser, 2012, 71-113.
  4. D. Alpay, P.E.T. Jorgensen, I. Lewkowicz, Parameterization of all wavelet filters: input-output and state space, Sampling Theory in Signal and Image Processing 12 (2013), 159-188.
  5. D. Alpay, P.E.T. Jorgensen, I. Lewkowicz, Characterizations of families of rectangular, finite impulse response, para-unitary systems, to appear in Journal of Applied Mathematics and Computing.
  6. D. Alpay, P.E.T. Jorgensen, I. Lewkowicz, Finite impulse response filter-bank - an interpolation approach, a preprint.
  7. D. Alpay, P. Jorgensen, I. Lewkowicz, I. Marziano, Representation Formulas for Hardy space functions through the Cuntz relations and new interpolation problems, [in:] X. Shen, A. Zayed (eds), Multiscale Signal Analysis and Modeling, Lecture Notes in Electrical Engineering, Springer, 2013, 161-182.
  8. D. Alpay, I. Lewkowicz, Interpolation by polynomials with symmetries, Linear Algebra and its Applications 456 (2014), 64-81.
  9. D. Alpay, M. Rakowski, Rational matrix functions with coisometric values on the imaginary line, J. Math. Anal. Appl. 194 (1995), 259-292.
  10. D. Alpay, M. Rakowski, Co-Isometrically Valued Matrix Functions, Operator Theory: Advances and Applications, vol. 80, Birkhäuser, 1995, 1-20.
  11. H. Bart, I. Gohberg, M. Kaashoek, Minimal Factorization of Matrix and Operator and Functions, Operator Theory: Advances and Applications, vol. 1, Birkhäuser, 1979.
  12. A. Boggess, F.J. Narcowich, A First Course in Wavelets with Fourier Analysis, 2nd ed., Wiley, 2009.
  13. O. Bratteli, P.E.T. Jorgensen, Wavelet filters and infinite-dimensional unitary groups, Proceedings of the International Conference on Wavelet Analysis and Applications (Guangzhou, China 1999), AMS/IP Stud. Adv. Math., Amer. Math. Soc. 25 (2002), 35-65.
  14. O. Bratteli, P.E.T. Jorgensen, Wavelets Through the Looking Glass, Birkhäuser, 2002.
  15. D. Cescato, H. Bölcskei, QR decomposition of laurent polynomial matrices sampled on the unit circle, IEEE Trans. Inf. Theory 56 (2010), 4754-4761.
  16. D. Cescato, H. Bölcskei, Algorithms for interpolation-based QR decomposition in MIMO-OFDM systems, IEEE Trans. Signal Proc. 59 (2011), 1719-1733.
  17. L. Chai, J. Zhang, C. Zhang, E. Mosca, Bound ratio minimization of filter banks frames, IEEE Trans. Sig. Proc. 58 (2010), 209-220.
  18. G.D. Forney, Jr., Minimal bases of rational vector spaces, with applications to multivariable linear systems, SIAM J. Contr. 13 (1975), 493-520.
  19. L. de Branges, J. Rovnyak, Canonical Models in Quantum Scattering Theory, Perturbation Theory and Its Application in Quantum Mechanics, C.H. Wilcox (ed.), John Wiley & Sons, Inc., 1966, 295-392.
  20. X. Gao, T.Q. Nguyen, G. Strang, On factorization of \(M\)-channel paraunitary filterbanks, IEEE Trans. Signal Proc. 49 (2001), 1433-1446.
  21. Y. Genin, P. Van Dooren, T. Kailath, J.M. Delosme, M. Morf, On \(\Sigma\)lossless transfer functions and related questions, Linear Algebra Appl. 50 (1983), 251-275.
  22. G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1983.
  23. B. Hanzon, M. Olivi, R.L.M. Peeters, Balanced realization of discrete-time stable all-pass systems and tangenetial Schur algorithm, Linear Algebra and its Applications 418 (2006), 793-820.
  24. H.G. Hoang, H.D. Tuan, T.Q. Nguyen, Frequency selective KYP lemma, IIR filter and filter bank design, IEEE Trans. Sign. Proc. 57 (2009), 956-965.
  25. R.A. Horn, C.R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
  26. R.A. Horn, C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
  27. S. Icart, Matrices polynomiales et égaliation de canal, Mémoire d'Habilitation à Diriger des Recherches, Polytech Nice Sophia-Antipolis Département Electronique, 2013 [in French].
  28. P.E.T. Jorgensen, Matrix factorizations, algorithms, wavelets, Notices Amer. Math. Soc. 50 (2003), 880-894.
  29. P.E.T. Jorgensen, Analysis and Probability: Wavelets, Signals, Fractals, Graduate Texts in Mathematics, vol. 234, Springer, 2006.
  30. P.E.T. Jorgensen, Unitary matrix functions, wavelet algorithms, and structural properties of wavelets, Gabor and wavelet frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., vol. 10, World Sci. Publ., Hackensack, NJ, 2007, 107-166.
  31. T. Kailath, Linear Systems, Prentice-Hall, 1980.
  32. S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed., Academic Press, 2009.
  33. J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, J. Foster, An EVD algorithm for para-Hermitian polynomial matrices, IEEE Trans. Sig. Proc. 55 (2007), 2158-2169.
  34. M. Olivi, Parametrization of rational lossless matrices with applications to linear system theory, Mémoire d'Habilitation à Diriger des Recherches, Université De Nice Sophia Antipolis, Mathématique 2010.
  35. S. Oraintara, T.D. Tran, P.N. Heller, T.Q. Nguyen, Lattice structure for regular para-unitary linear-phase filterbanks and \(M\)-band orthogonal symmetric wavelets, IEEE Trans. Sig. Proc. 49 (2001), 2659-2672.
  36. R.L.M. Peeters, B. Hanzon, M. Olivi, Canonical lossless state-space systems: staircase forms and the Schur algorithm, Linear Algebra and its Applications 425 (2007), 404-433.
  37. V.P. Potapov, Multiplicative structure of J-nonexpansive matrix functions, Trudy Mosk. Math. Ob. 4 (1955), 125-236 [Russian]; English translation: AMS Translations, Series 2, 15 (1960), 131-243.
  38. S. Redif, J.G. McWhirter, S. Weiss, Design of FIR paraunitary filter banks for subband coding using polynomial eigenvalue decomposition, IEEE Trans. Sig. Proc. 59 (2011), 5253-5264.
  39. M. Sørensen, L. De Lathauwer, S. Icart, L. Deneire, On Jacobi-type methods for blind equalization of paraunitary channels, Signal Processing 92 (2012), 617-625.
  40. G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-Cambridge Press, 1996.
  41. M. Tohidan, H. Amindavar, A.M. Reza, A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices, EURASIP J. Advances in Signal Processing, 93 (2013), 1-16.
  42. J. Tuqan, P.P. Vaidyanathan, A state space approach to the design of globally optimal FIR energy compaction filters, IEEE Trans. Sig. Proc. 48 (2000), 2822-2838.
  43. P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, Signal Processing Series, 1993.
  44. G. Valli, Interpolation theory, loop groups and instantons, J. Reine Math. 446 (1994), 137-163.
  45. M. Vidyasagar, Control System Synthesis: A Factorization Approach, M.I.T. Press, Cambridge, 1985.
  46. H. Vikalo, B. Hassibi, A. Erdogan, T. Kailath, On robust signal reconstruction in noisy filter banks, Eurasip Signal Processing 85 (2005), 1-14.
  47. G. Yang, N. Zheng, An optimization algorithm for biorthogonal wavelet filter banks design, Int. J. Wavelets Multiresolut. Infor. Process. 6 (2008), 51-63.
  48. K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control, Prentice-Hall, 1996.
  • Daniel Alpay
  • Department of Mathematics, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel
  • Palle Jorgensen
  • Department of Mathematics, 14 MLH, The University of Iowa, Iowa City, IA 52242-1419, USA
  • Izchak Lewkowicz
  • Department of Electrical Engineering, Ben Gurion University of the Negev, P.O.B. 653, Be'er Sheva 84105, Israel
  • Communicated by P.A. Cojuhari.
  • Received: 2016-05-03.
  • Revised: 2016-06-04.
  • Accepted: 2016-06-07.
  • Published online: 2016-10-29.
Opuscula Mathematica - cover

Cite this article as:
Daniel Alpay, Palle Jorgensen, Izchak Lewkowicz, Characterizations of rectangular (para)-unitary rational functions, Opuscula Math. 36, no. 6 (2016), 695-716, http://dx.doi.org/10.7494/OpMath.2016.36.6.695

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.