Opuscula Math. 36, no. 5 (2016), 681-687
http://dx.doi.org/10.7494/OpMath.2016.36.5.681

 
Opuscula Mathematica

On a problem of Gevorkyan for the Franklin system

Zygmunt Wronicz

Abstract. In 1870 G. Cantor proved that if \(\lim_{N\rightarrow\infty}\sum_{n=-N}^N\,c_{n}e^{inx} = 0\) for every real \(x\), where \(\bar{c}_{n}=c_{n}\) (\(n\in \mathbb{Z}\)), then all coefficients \(c_{n}\) are equal to zero. Later, in 1950 V. Ya. Kozlov proved that there exists a trigonometric series for which a subsequence of its partial sums converges to zero, where not all coefficients of the series are zero. In 2004 G. Gevorkyan raised the issue that if Cantor's result extends to the Franklin system. The conjecture remains open until now. In the present paper we show however that Kozlov's version remains true for Franklin's system.

Keywords: Franklin system, orthonormal spline system, trigonometric system, uniqueness of series.

Mathematics Subject Classification: 42C10, 42C25, 41A15.

Full text (pdf)

  1. J.H. Ahlberg, E.N. Nilson, J.L. Walsh, The theory of splines and their applications, Academic Press, New York-London, 1967.
  2. F.G. Arutyunyan, A.A. Talalyan, Uniqueness of Series in Haar and Walsh systems, Izv. Akad. Nauk SSSR, Ser. Matem. 28 (1964), 1391-1408 [in Russian].
  3. N.K. Bari, Trigonometric series, Moscow 1961 [in Russian].
  4. S.V. Bochkarev, Existence of a basis in the space of functions analytic in a disc and some properties of the Franklin system, Mat. Sb. 95 (1974) 137, 3-18 [in Russian].
  5. G. Cantor, Über einen die Trigonometrischen Reihen betreffenden Lehrsatz, Crelles J. für Math. 72 (1870), 130-138.
  6. Z. Ciesielski, Properties of the orthonormal Franklin system, Studia Math. 23 (1963), 141-157.
  7. Z. Ciesielski, A construction of basis in \(C^{(1)}(I^{2})\), Studia Math. 33 (1969), 289-323.
  8. Z. Ciesielski, Constructive function theory and spline systems, Studia Math. 53 (1975), 278-302.
  9. Z. Ciesielski, J. Domsta, Construction of an orthonormal basis in \(C^{m}(I^{d})\) and \(W_{p}^{m}(I^{d})\), Studia Math. 41 (1972), 211-224.
  10. S. Demko, Inverses of band matrices and local convergence of splines projections, SIAM J. Numer. Anal. 14 (1977) 4, 616-619.
  11. Ph. Franklin, A set of continuous orthogonal functions, Math. Ann. 100 (1928), 522-529.
  12. G.G. Gevorkyan, Ciesielski and Franklin systems, [in:] Approximation and Probability, Banach Center Publ. 72, Warszawa 2006, 85-92.
  13. V.Ya. Kozlov, On complete systems of orthogonal functions, Mat. Sbornik N.S. 26 (1950) 68, 351-364 [in Russian].
  14. J. Marcinkiewicz, Quelques theorems sur les series orthogonales, Ann. Soc. Polon. Math. 16 (1937), 84-96.
  15. S. Schonefeld, Schauder bases in spaces of differential functions, Bull. Amer. Math. Soc. 75 (1969), 586-590.
  16. P. Wojtaszczyk, The Franklin system is an unconditional basis in \(H^{1}\), Ark. Mat. 20 (1982), 293-300.
  17. Z. Wronicz, On the application of the orthonormal Franklin system to the approximation of analytic functions, [in:] Approximation Theory, Banach Center Publ. 4, PWN, Warszawa 1979, 305-316.
  18. Z. Wronicz, Approximation by complex splines, Zeszyty Nauk. Uniw. Jagiellon. Prace Mat. 20 (1979), 67-88.
  • Zygmunt Wronicz
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Communicated by P.A. Cojuhari.
  • Received: 2014-12-19.
  • Revised: 2016-01-09.
  • Accepted: 2016-05-15.
  • Published online: 2016-06-29.
Opuscula Mathematica - cover

Cite this article as:
Zygmunt Wronicz, On a problem of Gevorkyan for the Franklin system, Opuscula Math. 36, no. 5 (2016), 681-687, http://dx.doi.org/10.7494/OpMath.2016.36.5.681

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.