Opuscula Math. 36, no. 5 (2016), 671-679
http://dx.doi.org/10.7494/OpMath.2016.36.5.671

 
Opuscula Mathematica

On a dense minimizer of empirical risk in inverse problems

Jacek Podlewski
Zbigniew Szkutnik

Abstract. Properties of estimators of a functional parameter in an inverse problem setup are studied. We focus on estimators obtained through dense minimization (as opposed to minimization over \(\delta\)-nets) of suitably defined empirical risk. At the cost of imposition of a sort of local finite-dimensionality assumption, we fill some gaps in the proofs of results published by Klemelä and Mammen [Ann. Statist. 38 (2010), 482-511]. We also give examples of functional classes that satisfy the modified assumptions.

Keywords: inverse problem, empirical risk minimization.

Mathematics Subject Classification: 62G07.

Full text (pdf)

  1. L. Birgé, P. Massart, Rates of convergence for minimum contrast estimators, Probab. Theory Relat. Fields 97 (1993), 113-150.
  2. L. Birgé, P. Massart, An adaptive compression algorithm in Besov spaces, Const. Approx. 16 (2000), 1-36.
  3. A. Cohen, W. Dahmen, I. Daubechies, R. DeVore, Tree approximation and optimal encoding, Appl. and Comp. Harmonic Analysis 11 (2001), 192-226.
  4. F. Comte, M.-L. Taupine, Y. Rosenholc, Penalized contrast estimator for density deconvolution, Canad. J. Statist. 34 (2006), 431-452.
  5. R. DeVore, G. Lorentz, Constructive Approximation, Springer-Verlag, New York, 1993.
  6. E. Gassiat, R. van Handel, The local geometry of finite mixtures, Trans. Amer. Math. Soc. 366 (2014), 1047-1072.
  7. J. Heinonen, Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, 2001.
  8. J. Klemelä, E. Mammen, Empirical risk minimization in inverse problems: Extended technical version, (2009), available at http://arxiv.org/abs/0904.2977v1
  9. J. Klemelä, E. Mammen, Empirical risk minimization in inverse problems, Ann. Statist. 38 (2010), 482-511.
  10. M. Kosorok, Introduction to Empirical Processes and Semiparametric Inference, Springer-Verlag, New York, 2008.
  11. L.M. Le Cam, Asymptotic Methods in Statistical Decision Theory, Springer-Verlag, New York, 1986.
  12. T. Nicoleris, Y.G. Yatracos, Rates of convergence of estimates, Kolmogorov's entropy and the dimensionality reduction principle in regression, Ann. Statist. 25 (1997), 2493-2511.
  13. M.J. van der Laan, S. Dudoit, A.W. van der Vaart, The cross-validated adaptive epsilon-net estimator, Statist. Decisions 24 (2006), 373-395.
  14. V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.
  15. Y.G. Yatracos, Rates of convergence of minimum distance estimators and Kolmogorov's entropy, Ann. Statist. 13 (1985), 768-774.
  • Jacek Podlewski
  • StatSoft Poland, ul. Kraszewskiego 36, 30-110 Krakow, Poland
  • Zbigniew Szkutnik
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Communicated by Andrzej Kozek.
  • Received: 2015-10-15.
  • Revised: 2016-03-10.
  • Accepted: 2016-03-10.
  • Published online: 2016-06-29.
Opuscula Mathematica - cover

Cite this article as:
Jacek Podlewski, Zbigniew Szkutnik, On a dense minimizer of empirical risk in inverse problems, Opuscula Math. 36, no. 5 (2016), 671-679, http://dx.doi.org/10.7494/OpMath.2016.36.5.671

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.