Opuscula Math. 36, no. 3 (2016), 337-373
http://dx.doi.org/10.7494/OpMath.2016.36.3.337

 
Opuscula Mathematica

Certain group dynamical systems induced by Hecke algebras

Ilwoo Cho

Abstract. In this paper, we study dynamical systems induced by a certain group \(\mathfrak{T}_{N}^{K}\) embedded in the Hecke algebra \(\mathcal{H}(G_{p})\) induced by the generalized linear group \(G_{p} = GL_{2}(\mathbb{Q}_{p})\) over the \(p\)-adic number fields \(\mathbb{Q}_{p}\) for a fixed prime \(p\). We study fundamental properties of such dynamical systems and the corresponding crossed product algebras in terms of free probability on the Hecke algebra \(\mathcal{H}(G_{p})\).

Keywords: free probability, free moments, free cumulants, Hecke algebra, normal Hecke subalgebra, free probability spaces, representations, operators, Hilbert spaces, dynamical systems, crossed product algebras.

Mathematics Subject Classification: 05E15, 11R47, 46L10, 47L30, 47L55.

Full text (pdf)

  1. M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, Cambridge, 2000.
  2. I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313-340.
  3. I. Cho, \(p\)-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29-65.
  4. I. Cho, Representations and corresponding operators induced Hecke algebras, Complex Anal. Oper. Theory, DOI: 10.1007/s11785-014-0418-7, (2014). http://dx.doi.org/10.1007/s11785-014-0418-7.
  5. I. Cho, Dynamical systems on arithmetic functions determined by primes, Banach J. Math. Anal. 9 (2015) 1, 173-215.
  6. I. Cho, Free probability on Hecke algebras and certain group \(C^{*}\)-algebras induced by Hecke algebras, Opuscula Math. 36 (2016) 1, 153-187.
  7. I. Cho, T. Gillespie, Free probability on the Hecke algebra, Compl. Anal. Oper. Theory, DOI: 10.1007/s11785-014-0403-1, (2015). http://dx.doi.org/10.1007/s11785-014-0403-1.
  8. I. Cho, P.E.T. Jorgensen, Krein-Space Operators Induced by Dirichlet Characters, Contemp. Math.: Commutative and Noncommutative Harmonic Analysis and Applications, Amer. Math. Soc. (2014), 3-33.
  9. I. Cho, P.E.T. Jorgensen, Matrices induced by arithmetic functions, primes, and groupoid actions of directed graphs, Special Matrices (2015), to appear.
  10. T. Gillespie, Superposition of zeroes of automorphic \(L\)-functions and functoriality, Univ. of Iowa, PhD Thesis (2010).
  11. T. Gillespie, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
  12. F. Radulescu, Random matrices, amalgamated free products and subfactors of the \(C^{*}\)-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
  13. R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
  14. V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
  15. D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, 1992.
  • Ilwoo Cho
  • St. Ambrose University, Department of Mathematics and Statistics, 421 Ambrose Hall, 518 W. Locust St., Davenport, Iowa, 52803, USA
  • Communicated by P.A. Cojuhari.
  • Received: 2015-03-30.
  • Revised: 2015-05-19.
  • Accepted: 2015-07-06.
  • Published online: 2016-02-21.
Opuscula Mathematica - cover

Cite this article as:
Ilwoo Cho, Certain group dynamical systems induced by Hecke algebras, Opuscula Math. 36, no. 3 (2016), 337-373, http://dx.doi.org/10.7494/OpMath.2016.36.3.337

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.