Opuscula Math. 36, no. 3 (2016), 337-373
http://dx.doi.org/10.7494/OpMath.2016.36.3.337
Opuscula Mathematica
Certain group dynamical systems induced by Hecke algebras
Abstract. In this paper, we study dynamical systems induced by a certain group \(\mathfrak{T}_{N}^{K}\) embedded in the Hecke algebra \(\mathcal{H}(G_{p})\) induced by the generalized linear group \(G_{p} = GL_{2}(\mathbb{Q}_{p})\) over the \(p\)-adic number fields \(\mathbb{Q}_{p}\) for a fixed prime \(p\). We study fundamental properties of such dynamical systems and the corresponding crossed product algebras in terms of free probability on the Hecke algebra \(\mathcal{H}(G_{p})\).
Keywords: free probability, free moments, free cumulants, Hecke algebra, normal Hecke subalgebra, free probability spaces, representations, operators, Hilbert spaces, dynamical systems, crossed product algebras.
Mathematics Subject Classification: 05E15, 11R47, 46L10, 47L30, 47L55.
- M. Aschbacher, Finite Group Theory, Cambridge Univ. Press, Cambridge, 2000.
- I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313-340.
- I. Cho, \(p\)-adic Banach space operators and adelic Banach space operators, Opuscula Math. 34 (2014) 1, 29-65.
- I. Cho, Representations and corresponding operators induced Hecke algebras, Complex Anal. Oper. Theory, DOI: 10.1007/s11785-014-0418-7, (2014). http://dx.doi.org/10.1007/s11785-014-0418-7
- I. Cho, Dynamical systems on arithmetic functions determined by primes, Banach J. Math. Anal. 9 (2015) 1, 173-215.
- I. Cho, Free probability on Hecke algebras and certain group \(C^{*}\)-algebras induced by Hecke algebras, Opuscula Math. 36 (2016) 1, 153-187.
- I. Cho, T. Gillespie, Free probability on the Hecke algebra, Compl. Anal. Oper. Theory, DOI: 10.1007/s11785-014-0403-1, (2015). http://dx.doi.org/10.1007/s11785-014-0403-1
- I. Cho, P.E.T. Jorgensen, Krein-Space Operators Induced by Dirichlet Characters, Contemp. Math.: Commutative and Noncommutative Harmonic Analysis and Applications, Amer. Math. Soc. (2014), 3-33.
- I. Cho, P.E.T. Jorgensen, Matrices induced by arithmetic functions, primes, and groupoid actions of directed graphs, Special Matrices (2015), to appear.
- T. Gillespie, Superposition of zeroes of automorphic \(L\)-functions and functoriality, Univ. of Iowa, PhD Thesis (2010).
- T. Gillespie, Prime number theorems for Rankin-Selberg \(L\)-functions over number fields, Sci. China Math. 54 (2011) 1, 35-46.
- F. Radulescu, Random matrices, amalgamated free products and subfactors of the \(C^{*}\)-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347-389.
- R. Speicher, Combinatorial theory of the free product with amalgamation and operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.
- V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, \(p\)-Adic Analysis and Mathematical Physics, Ser. Soviet & East European Math., vol. 1, World Scientific, 1994.
- D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, CRM Monograph Series, vol. 1, 1992.
- Ilwoo Cho
- St. Ambrose University, Department of Mathematics and Statistics, 421 Ambrose Hall, 518 W. Locust St., Davenport, Iowa, 52803, USA
- Communicated by P.A. Cojuhari.
- Received: 2015-03-30.
- Revised: 2015-05-19.
- Accepted: 2015-07-06.
- Published online: 2016-02-21.