Opuscula Math. 36, no. 2 (2016), 207-213
http://dx.doi.org/10.7494/OpMath.2016.36.2.207
Opuscula Mathematica
A two cones support theorem
Abstract. We show that if the Radon transform of a distribution \(f\) vanishes outside of an acute cone \(C_{0}\), the support of the distribution is contained in the union of \(C_{0}\) and another acute cone \(C_{1}\), the cones are in a suitable position, and \(f\) vanishes distributionally in the direction of the axis of \(C_{1}\), then actually \(\operatorname*{supp}f\subset C_{0}\). We show by examples that this result is sharp.
Keywords: Radon transforms, support theorems, distributions.
Mathematics Subject Classification: 44A12, 46F10.
- D.H. Armitage, M. Goldstein, Nonuniqueness for the Radon transform, Proc. Amer. Math. Soc. 117 (1993), 175-178.
- J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms, Contemp. Math. 140 (1992), 23-30.
- J. Boman, F. Lindskog, Support theorems for the Radon transform and Cramér-Wold theorems, J. Theor. Probab. 22 (2009), 683-710.
- R. Estrada, Vector moment problems for rapidly decreasing functions of several variables, Proc. Amer. Math. Soc. 126 (1998), 761-768.
- R. Estrada, Support theorems for Radon transforms of oscillatory distributions, Krugujevac J. Math. 39 (2015), 197-205.
- R. Estrada, R.P. Kanwal, A distributional approach to Asymptotics. Theory and Applications, 2nd ed., Birkhäuser, Boston, 2002.
- R. Estrada, B. Rubin, Null spaces of Radon transforms, preprint 2015, arXiv:1504.03766.
- S. Helgason, The Radon transform in Euclidean spaces, compact two-point homogeneous spaces and Grassman manifolds, Acta Math. 113 (1965), 153-180.
- S. Helgason, Geometric Analysis on Symmetric Spaces, Amer. Math. Soc., Providence, 2008.
- L. Hörmander, The Analysis of Partial Differential Operators, vol. 1, Distribution Theory and Fourier Analysis, Springer Verlag, Berlin, 1983.
- J. Horváth, Topological Vector Spaces and Distributions, vol. I, Addison-Wesley, Reading, Massachusetts, 1966.
- D. Ludwig, The Radon transform on Euclidean space, Comm. Pure Appl. Math. 19 (1966), 49-81.
- S. Łojasiewicz, Sur la valuer et la limite d'une distribution en un point, Studia Math. 16 (1957), 1-36.
- S. Łojasiewicz, Sur la fixation de variables dans une distribution, Studia Math. 17 (1958), 1-64.
- A.G. Ramm, Radon transform on distributions, Proc. Japan Acad. 71 (1995), 202-206.
- A.G. Ramm, A.I. Katsevich, The Radon Transform and Local Tomography, CRC Press, Boca Raton, 1996.
- B. Rubin, Introduction to Radon transforms (with elements of fractional calculus and harmonic analysis), Cambridge University Press, 2015 (to appear).
- R.S. Strichartz, Radon inversion - variation on a theme, Am. Math. Mon. 89 (1982), 377-384.
- F. Trèves, Topological Vector Spaces, Distributions, and Kernels, Academic Press, New York, 1967.
- L. Zalcman, Uniqueness and nonuniqueness for the Radon transform, Bull. London Math. Soc. 14 (1982), 241-245.
- Ricardo Estrada
- Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803, U.S.A.
- Communicated by Semyon B. Yakubovich.
- Received: 2015-07-03.
- Revised: 2015-09-18.
- Accepted: 2015-10-11.
- Published online: 2015-12-18.