Opuscula Math. 36, no. 1 (2016), 103-122
http://dx.doi.org/10.7494/OpMath.2016.36.1.103
Opuscula Mathematica
On triangular (Dn)-actions on cyclic p-gonal Riemann surfaces
Abstract. A compact Riemann surface \(X\) of genus \(g\gt 1\) which has a conformal automorphism \(\rho\) of prime order \(p\) such that the orbit space \(X/ \langle \rho \rangle \) is the Riemann sphere is called cyclic \(p\)-gonal. Exceptional points in the moduli space \(\mathcal{M}_g\) of compact Riemann surfaces of genus \(g\) are unique surface classes whose full group of conformal automorphisms acts with a triangular signature. We study symmetries of exceptional points in the cyclic \(p\)-gonal locus in \(\mathcal{M}_g\) for which \(\text{Aut}(X)/ \langle \rho \rangle\) is a dihedral group \(D_n\).
Keywords: Riemann surface, symmetry, triangle group, Fuchsian group, NEC group.
Mathematics Subject Classification: 30F10, 14H37.
- R.D.M. Accola, On the number of automorphisms of a closed Riemann surface, Trans. Amer. Math. Soc. 131 (1968), 398-408.
- R.D.M. Accola, On cyclic trigonal Riemann surfaces, Trans. Amer. Math. Soc. 283 (1984) 2, 423-449.
- G.V. Belyi, On Galois extensions of maximal cyclotomic field, Math. USSR Izvestiya 14 (1980), 247-256.
- S.A. Broughton, E. Bujalance, A.F. Costa, J.M. Gamboa, G. Gromadzki, Symmetries of Accola-Maclachlan and Kulkarni Surfaces, Proc. Amer. Math. Soc. 127 (1999), 637-646.
- E. Bujalance, F.J. Cirre, J.M. Gamboa, G. Gromadzki, Symmetry Types of Hyperelliptic Riemann Surfaces, Mémoires de la Société Mathématique De France (2001).
- G. Castelnuevo, Sulle serie algebriche di gruppi di punti appartenenti ad una curve algebraica, Rend. R. Academia Lincei Ser. 5 XV (1906), (Memorie scelte p. 509).
- H.M. Farkas, I. Kra, Riemann Surfaces, Graduate Text in Mathematics, Springer-Verlag, New York, 1980.
- G. Gromadzki, On a Harnack-Natanzon Theorem for the family of real forms of Riemann surfaces, J. Pure Appl. Algebra 121 (1997), 253-269.
- A. Harnack, Über die Vieltheiligkeit der ebenen algebraischen Kurven, Math. Ann. 10 (1876), 189-199.
- A. Hurwitz, Über alebraische Gebilde mit eindeutigen Transformationen in sich, Math. Ann. 41 (1983).
- G.A. Jones, D. Singerman, P.D. Watson, Symmetries of quasiplatonic Riemann surfaces, Rev. Mat. Iberoam. (to appear).
- A.M. Macbeath, The classification of non-Euclidean plane crystallographic groups, Canad. J. Math. 19 (1966), 1192-1205.
- A.M. Macbeath, Action of automorphisms of a compact Riemann surface on the first homology group, Bull. Lond. Math. Soc. 5 (1973), 103-108.
- A.M. Macbeath, On a theorem of Hurwitz, Proc. Glasgow Math. Assoc. 5 (1961), 90-96.
- C. Maclachlan, Smooth coverings of hyperelliptic surfaces, Quart. Journal of Math. Oxford 2 (1971), 117-123.
- D. Singerman, Symmetries of Riemann surfaces with large automorphism group, Math. Ann. 210 (1974), 17-32.
- D. Singerman, Non-Euclidean crystallographic groups and Riemann surfaces, Ph.D. Thesis, Univ. of Birmingham, 1969.
- D. Singerman, Finitely maximal Fuchsian groups, J. Lond. Math. Soc. (2) 6 (1972), 29-38.
- D. Singerman, The remarkable Accola-Maclachlan surfaces, [in:] Contemp. Math., vol. 629, Amer. Math. Soc., Providence, RI, 2014, pp. 315-322.
- E. Tyszkowska, Topological classification of conformal actions on cyclic \(p\)-gonal Riemann surfaces, Journal of Algebra 344 (2011), 296-312.
- E. Tyszkowska, A. Weaver, Exceptional points in the elliptic-hyperelliptic locus, J. Pure Appl. Algebra 212 (2008), 1415-1426.
- A. Weaver, Hyperelliptic surfaces and their moduli, Geom. Dedicata 103 (2004), 69-87.
- H.C. Wilkie, On non-Euclidean crystallographic groups, Math. Z. 91 (1966), 87-102.
- Ewa Tyszkowska
- University of Gdańsk, Institute of Mathematics, Wita Stwosza 57, 80-952 Gdańsk, Poland
- Communicated by P.A. Cojuhari.
- Received: 2014-11-11.
- Revised: 2015-02-16.
- Accepted: 2015-02-17.
- Published online: 2015-09-19.