Opuscula Math. 36, no. 1 (2016), 25-48
http://dx.doi.org/10.7494/OpMath.2016.36.1.25

 
Opuscula Mathematica

Kernel conditional quantile estimator under left truncation for functional regressors

Nacéra Helal
Elias Ould Saïd

Abstract. Let \(Y\) be a random real response which is subject to left-truncation by another random variable \(T\). In this paper, we study the kernel conditional quantile estimation when the covariable \(X\) takes values in an infinite-dimensional space. A kernel conditional quantile estimator is given under some regularity conditions, among which in the small-ball probability, its strong uniform almost sure convergence rate is established. Some special cases have been studied to show how our work extends some results given in the literature. Simulations are drawn to lend further support to our theoretical results and assess the behavior of the estimator for finite samples with different rates of truncation and sizes.

Keywords: almost sure convergence, functional variables, kernel estimator, Lynden-Bell estimator, small-ball probability, truncated data.

Mathematics Subject Classification: 62G05, 62G07, 62G20, 62M09.

Full text (pdf)

  1. A. Berlinet, A. Gannoun, E. Matzner-Lober, Asymptotic normality of convergent estimates of conditional quantiles, Statistics 35 (2001), 139-168.
  2. V.I. Bogachev, Gaussian Measures, Mathematical Surveys and Monographs, vol. 62, Amer. Math. Soc., 1999.
  3. E.G. Bongiorno, E. Salinelli, A. Goia, P. Vieu (eds), Contributions in infinite-dimensional statistics and related topics, Società editrice Esculapio, Bologna, 2014.
  4. D. Bosq, Linear Processs in Function Spaces. Theory and Application, Lectures Notes in Statistics, vol. 149, Springer-Verlag, New York, 2000.
  5. P. Chaudhuri, Nonparametric estimates of regression quantiles and their local Bahadur representation, Ann. Statist. 19 (1991), 760-777.
  6. G. Collomb, Estimation de la régression par la méthode des k points les plus prochesavec noyau. Quelques propriétés de convergence ponctuelle, [in:] Nonparametric Asymptotic Statistics, Lecture Notes in Math., Springer, Berlin, 821 (1980), 159-175.
  7. M. El Bahi, E. Ould Saïd, Strong uniform consistency of nonparametric estimation of the censored conditional quantile for functional regressors, Prépublication, L.M.P.A. 383 (2009), Calais, U.L.C.O. Unpublished paper.
  8. M. El Bahi, E. Ould Saïd, Asymptotic distribution of a nonparametric regression quantile with censored data and functional regressors, Prépublication, L.M.P.A. 385 (2009), Calais, U.L.C.O. Unpublished paper.
  9. F. Ferraty, A. Laksaci, P. Vieu, Estimating some characteristics of the conditional distribution in nonparametric functional models, Statist. Inf. Stoch. Processes 9 (2006), 47-76.
  10. F. Ferraty, A. Laksaci, A. Tadj, P. Vieu, Rate of uniform consistency for nonparametric estimates with functional variables, J. of Statist. Plann. and Inference 140 (2010), 335-352.
  11. F. Ferraty, V. Vieu, Nonparametric Functional Data Analysis: Theory and Practice, Springer-Verlag, New York, 2006.
  12. F. Ferraty, A. Mas, P. Vieu, Advances in nonparametric regression on functional data, Aust. and New Zeal. J. of Statist. 49 (2007), 1-20.
  13. F. Ferraty, A. Rabhi, P. Vieu, Conditional quantiles for functional dependant data with application to the climatic El Niño phenomenon, Sankhyã 67 (2005), 378-398.
  14. F. Ferraty, Y. Romain, The Oxford Handbook of Functional Data Analysis, Oxford University Press, New York, 2010.
  15. T. Gasser, P. Hall, B. Presnell, Nonparametric estimation of the mode of a distribution of random curves, J. R. Stat. Soc., Ser. B 60 (1998), 681-691.
  16. S.D. Harlow, K. Cain, S. Crawford, Evaluation of four proposed bleeding criteria for the onset of late menopausal transition, J. Clin. Endocrinol Metab. 91 (2006), 3432-3438.
  17. S. He, G. Yang, Estimation of the truncation probability in the random truncation model, Ann. Statist. 26 (1998), 1011-1027.
  18. W. Horrigue, E. Ould Saïd, Strong uniform consistency of a nonparametric estimator of a conditional quantile for censored dependent data and functional regressors conditional quantile for functionnal times series, [in:] Random Operators and Stoch. Equa., Birkhäusser Verlag, 2011, 131-156.
  19. W. Horrigue, E. Ould Saïd, Nonparametric conditional quantile estimation for dependant functional data under random censorship: Asymptotic normality, Comm. in Statist. - Theory Methods (2014), DOI 10.1080/03610926.2013.784993. http://dx.doi.org/10.1080/03610926.2013.784993.
  20. L. Horváth, P. Kokoszka, Inference for Functional Data with Applications, Springer-Verlag, New York, 2012.
  21. M.C. Jones, P. Hall, Mean squared error properties of kernel estimates of regression quantiles, Statist. Probab. Lett. 10 (1990), 283-289.
  22. J.D. Kalbfleisch, J.F. Lawless, Inference based on retrospective ascertainment: an analysis of the data on transfusion-related ADS, J. of the American Statist. Assoc. 84 (1989), 360-372.
  23. J.P. Klein, M.L. Moeschberger, Survival Analysis: Techniques for Censored and Truncated Data, 2nd edition, Springer, New York, 2003.
  24. R. Koenker, G.J. Basset, Regression quantiles, Econometrica 46 (1978), 33-50.
  25. N.L. Kudraszow, P. Vieu, Uniform consistency of kNN regressors for functionnal variables, Statist. Probab. Lett. 83 (2013), 1863-1870.
  26. M. Lemdani, E. Ould Saïd, Asymptotic behavior of the hazard rate kernel estimator under truncated and censored data, Comm. Statist. Theory Methods. 37 (2007), 155-173.
  27. M. Lemdani, E. Ould Saïd, N. Poulin, Asymptotic properties of a conditional quantile estimator with randomly truncated data, J. Multivariate Anal. 100 (2009), 546-559.
  28. M. Loève, Probability Theory I, 4th edition, Springer-Verlag, New York, 1977.
  29. A. Lynden-Bell, A method of allowing for known observational selection in small samples applied to 3CR quasars, Monthly Notices Roy. Astron. Soc. 155 (1971), 95-118.
  30. E. Masry, Nonparametric regression estimation for dependent functional data: Asymptotic normality, Stoch. Proc. and their Appl. 115 (2005), 155-177.
  31. R. Meister, C. Schaefer, Statistical methods for estimating the probability of spontaneous abortion in observational studies-analyzing pregnancies exposed to coumarin derivatives, Reprod Toxicol. 26 (2008), 31-35.
  32. E. Ould Saïd, M. Lemdani, Asymptotic properties of a nonparametric regression function estimator with randomly truncated data, Ann. Inst. Statist. Math. 58 (2006), 357-378.
  33. M. Rachdi, P. Vieu, Nonparametric regression for functional data: Automatic smoothing parameter selection, J. of Statist. Plann. and Inference 137 (2007), 2784-2801.
  34. J.O. Ramsay, B.W. Silverman, Functional Data Analysis, 2nd edition, Springer, New York, 2005.
  35. M. Samanta, Nonparametric estimation of conditional quantile, Statist. Probab. Lett. 7 (1989), 407-422.
  36. C.J. Stone, Consistent nonparametric regression, Ann. Statist. 5 (1977), 595-645.
  37. W. Stute, Almost sure representation of the product-limit estimator for truncated data, Ann. Statist. 21 (1993), 146-156.
  38. M. Woodroofe, Estimating a distribution function with truncated data, Ann. Statist. 13 (1985), 163-177.
  • Nacéra Helal
  • Département de Mathématiques, Université Djillali Liabès, BP 89, 22000, Sidi Bel Abbès, Algeria
  • Elias Ould Saïd
  • Université Lille Nord de France, F-59000 Lille, France
  • ULCO, LMPA, CS: 80699 Calais, France
  • Communicated by Zbigniew Szkutnik.
  • Received: 2014-02-04.
  • Revised: 2015-02-26.
  • Accepted: 2015-03-21.
  • Published online: 2015-09-19.
Opuscula Mathematica - cover

Cite this article as:
Nacéra Helal, Elias Ould Saïd, Kernel conditional quantile estimator under left truncation for functional regressors, Opuscula Math. 36, no. 1 (2016), 25-48, http://dx.doi.org/10.7494/OpMath.2016.36.1.25

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.