Opuscula Math. 35, no. 6 (2015), 957-972
http://dx.doi.org/10.7494/OpMath.2015.35.6.957

 
Opuscula Mathematica

Nontrivial solutions of linear functional equations: methods and examples

Adrienn Varga
Csaba Vincze

Abstract. For a wide class of linear functional equations the solutions are generalized polynomials. The existence of non-trivial monomial terms of the solution strongly depends on the algebraic properties of some related families of parameters. As a continuation of the previous work [A. Varga, Cs. Vincze, G. Kiss, Algebraic methods for the solution of linear functional equations, Acta Math. Hungar.] we are going to present constructive algebraic methods of the solution in some special cases. Explicit examples will be also given.

Keywords: linear functional equations, spectral analysis, field homomorphisms.

Mathematics Subject Classification: 39B22.

Full text (pdf)

  1. Z. Daróczy, Notwendige und hinreichende Bedingungen für die Existenz von nichtkonstanten Lösungen linearer Funktionalgleichungen, Acta Sci. Math. Szeged 22 (1961), 31-41.
  2. G. Kiss, A. Varga, Existence of nontrivial solutions of linear functional equations, Aequat. Math. 88 (2014), 151-162.
  3. M. Kuczma, An Introduction to the Theory of Functional Equations and Inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach, vol. CDLXXXIX, Państwowe Wydawnictwo Naukowe - Uniwersytet Śląski, Warszawa-Kraków-Katowice, 1985.
  4. M. Laczkovich, G. Kiss, Linear functional equations, differential operators and spectral synthesis, accepted for publication in Aequat. Math., published online 21 June 2014.
  5. M. Laczkovich, G. Kiss, Non-constant solutions of linear functional equations, 49th Int. Symp. on Functional equation, Graz (Austria), June 19-26, 2011, http://www.uni-graz.at/jens.schwaiger/ISFE49/talks/saturday/Laczkovich.pdf.
  6. L. Székelyhidi, On a class of linear functional equations, Publ. Math. (Debrecen) 29 (1982), 19-28.
  7. L. Székelyhidi, Convolution type functional equations on topological Abelian goups, World Scientific Publishing Co. Inc. Teaneck, NJ, 1991.
  8. A. Varga, On additive solutions of a linear equation, Acta Math. Hungar. 128 (2010), 15-25.
  9. A. Varga, Cs. Vincze, On Daróczy's problem for additive functions, Publ. Math. Debrecen 75 (2009), 299-310.
  10. A. Varga, Cs. Vincze, On a functional equations containing weighted arithmetic means, International Series of Numerical Mathematics 157 (2009), 305-315.
  11. A. Varga, Cs. Vincze, G. Kiss, Algebraic methods for the solution of linear functional equations, accepted for publication in Acta Math. Hungar.
  • Adrienn Varga
  • University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
  • Csaba Vincze
  • University of Debrecen, H-4010 Debrecen, P.O. Box 12, Hungary
  • Communicated by Karol Baron.
  • Received: 2014-08-28.
  • Revised: 2014-12-15.
  • Accepted: 2014-12-16.
  • Published online: 2015-06-06.
Opuscula Mathematica - cover

Cite this article as:
Adrienn Varga, Csaba Vincze, Nontrivial solutions of linear functional equations: methods and examples, Opuscula Math. 35, no. 6 (2015), 957-972, http://dx.doi.org/10.7494/OpMath.2015.35.6.957

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.