Opuscula Math. 35, no. 6 (2015), 915-933
http://dx.doi.org/10.7494/OpMath.2015.35.6.915
Opuscula Mathematica
On the quasilinear Cauchy problem for a hyperbolic functional differential equation
Abstract. The Cauchy problem for hyperbolic functional differential equations is considered. Volterra and Fredholm dependence are considered. A theorem on the local existence of generalized solutions defined on the Haar pyramid is proved. A result on differentiability of a solution with respect to initial data is proved.
Keywords: functional differential equations, Haar pyramid, differentiability of solutions, Fredholm type of equation.
Mathematics Subject Classification: 35R10, 35F25, 35A05.
- V.E. Abolina, A.D. Myshkis, Mixed problem for semilinear hyperbolic systems on the plane, Mat. Sb. 50 (1960), 423-442 [in Russian].
- P. Bassanini, M.C. Salvadori, Un problema ai limiti per sistemi integrodifferenziali nonlineari di tipo iperbolico, Boll. Un. Mat. Ital. B 5 (1981) 13, 785-798.
- P. Brandi, R. Ceppitelli, Existence, uniqueness and continuous dependence for hereditary nonlinear functional partial differential equation of the first order, Ann. Polon. Math. 47 (1986) 2, 121-136.
- P. Brandi, A. Salvadori, Z. Kamont, Existence of generalized solutions of hyperbolic functional differential equations, Nonlinear Anal. 50 (2002) 7, 919-940.
- W. Czernous, Semilinear hyperbolic functional differential problem on a cylindrical domain, Bull. Belg. Math. Soc. Simon Stevin 19 (2012) 1, 1-17.
- T. Człapiński, Z. Kamont, Generalized solutions of local initial problems for quasi-linear hyperbolic functional-differential systems, Studia Sci. Math. Hungar. 35 (1999) 1-2, 185-206.
- W. Eichhorn, W. Gleissner, On a functional differential equation arising in the theory of the distribution of wealth, Aequationes Math. 28 (1985), 190-198.
- M. El Doma, Analysis of nonlinear integro-differential equations arising in the age-dependent epidemic models, Nonlinear Anal. 11 (1987), 913-937.
- J.H. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, Berlin, 1993.
- D. Jaruszewska-Walczak, Existence of solutions of first order partial differential-functional equations, Boll. Un. Mat. Ital. B 4 (1990) 1, 57-82.
- Z. Kamont, Hyperbolic Functional Differential Inequalities and Applications, Mathematics and its Applications, vol. 486, Kulwer Academic Publishers, Dordrecht, 1999.
- E. Puźniakowska-Gałuch, Generalized Cauchy problems for hyperbolic functional differential systems, Ann. Polon. Math. 110 (2014), 33-53.
- E. Puźniakowska-Gałuch, Initial problems for hyperbolic functional differential systems, Georgian Math. J. 20 (2013) 2, 357-376.
- E. Puźniakowska-Gałuch, Differentiability with respect to initial functions for partial functional differential equations, Univ. Iag. Acta Math. 48 (2010), 111-131.
- E. Puźniakowska-Gałuch, On the local Cauchy problem for first order partial differential functional equations, Ann. Polon. Math. 98 (2010), 39-61.
- E. Puźniakowska, Classical solutions of quasilinear functional differential systems on the Haar pyramid, Diff. Equat. and Appl. 1 (2009) 2, 179-197.
- E. Sinestrari, G.F. Webb, Nonlinear hyperbolic systems with nonlocal boundary conditions, J. Math. Anal. Appl. 121 (1987), 449-464.
- J. Szarski, On integro-differential equations, Ann. Polon. Math. 14 (1964), 321-333.
- J. Turo, A boundary value problem for hyperbolic systems of differential-functional equations, Nonlinear Anal. 13 (1989) 1, 7-18.
- J. Turo, Local generalized solutions of mixed problems for quasilinear hyperbolic systems of functional partial differential equations in two independent variables, Ann. Polon. Math. 49 (1989) 3, 259-278.
- J. Wu, Theory and Applications of Partial Functional-Differential Equations, Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996.
- Elżbieta Puźniakowska-Gałuch
- University of Gdańsk, Institute of Mathematics, Wit Stwosz Street 57, 80-952 Gdańsk, Poland
- Communicated by Mirosław Lachowicz.
- Received: 2014-08-17.
- Revised: 2014-11-03.
- Accepted: 2014-11-04.
- Published online: 2015-06-06.