Opuscula Math. 35, no. 5 (2015), 567-594
http://dx.doi.org/10.7494/OpMath.2015.35.5.567
Opuscula Mathematica
Rigidity of monodromies for Appell's hypergeometric functions
Yoshishige Haraoka
Tatsuya Kikukawa
Abstract. For monodromy representations of holonomic systems, the rigidity can be defined. We examine the rigidity of the monodromy representations for Appell's hypergeometric functions, and get the representations explicitly. The results show how the topology of the singular locus and the spectral types of the local monodromies work for the study of the rigidity.
Keywords: rigidity, monodromy, arrangement of hyperplanes.
Mathematics Subject Classification: 33C65, 57M05.
- P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hypersphériques - Polynomes d'Hermite, Gauthier-Villars et cie, Paris, 1926.
- W.N. Bailey, Generalized Hypergeometric Series, Stechert-Hafner, Inc., New York, 1964.
- R. Gérard, A.H.M. Levelt, Étude d'une classe particulière de systèmes de Pfaff du type de Fuchs sur l'espace projectif complexe, J. Math. Pures Appl. 51 (1972), 189-217.
- Y. Haraoka, Middle convolution for completely integrable systems with logarithmic singularities along hyperplane arrangements, Adv. Stud. Pure Math. 62 (2012), 109-136.
- Y. Haraoka, T. Matsumura, Monodromy of completely integrable systems of rank 3 singular along free divisors, preprint.
- Y. Haraoka, Y. Ueno, Rigidity for Appell's hypergeometric series \(F_4\), Funkcial. Ekvac. 51 (2008), 149-164.
- E.R. van Kampen, On the fundamental group of an algebraic curve, Amer. J. Math. 55 (1933), 255-260.
- M. Kato, A Pfaffian system of Appell's F4, Bull. College Educ. Univ. Ryukyus 33 (1988), 331-334.
- M. Kato, Connection formulas for Appell's system \(F_4\) and some applications, Funkcial. Ekvac. 38 (1995), 243-266.
- N.M. Katz, Rigid Local Systems, Princeton Univ. Press, Princeton, NJ, 1996.
- T. Kimura, Hypergeometric Functions of Two Variables, Lecture Notes, Univ. of Minnesota, 1973.
- P. Orlik, H. Terao, Arrangements of Hyperplanes, Springer-Verlag, Berlin, 1992.
- R. Randell, The fundamental group of the complement of a union of complex hyperplanes, Invent. Math. 69 (1982), 103-108.
- G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, 1922.
- Yoshishige Haraoka
- Kumamoto University, Department of Mathematics, Kumamoto 860-8555, Japan
- Tatsuya Kikukawa
- Kumamoto High School, Shin-Oe 1-8, Kumamoto 862-0972, Japan
- Communicated by P.A. Cojuhari.
- Received: 2014-02-28.
- Revised: 2014-06-09.
- Accepted: 2014-11-15.
- Published online: 2015-04-27.