Opuscula Math. 35, no. 4 (2015), 499-515
http://dx.doi.org/10.7494/OpMath.2015.35.4.499
Opuscula Mathematica
On potential kernels associated with random dynamical systems
Mohamed Hmissi
Farida Mokchaha
Aya Hmissi
Abstract. Let \((\theta,\varphi)\) be a continuous random dynamical system defined on a probability space \((\Omega,\mathcal{F},\mathbb{P})\) and taking values on a locally compact Hausdorff space \(E\). The associated potential kernel \(V\) is given by \[ Vf(\omega ,x)= \int\limits_{0}^{\infty} f(\theta_{t}\omega,\varphi(t,\omega)x)dt, \quad \omega \in \Omega, x\in E.\] In this paper, we prove the equivalence of the following statements: 1. The potential kernel of \((\theta,\varphi)\) is proper, i.e. \(Vf\) is \(x\)-continuous for each bounded, \(x\)-continuous function \(f\) with uniformly random compact support. 2. \((\theta ,\varphi)\) has a global Lyapunov function, i.e. a function \(L:\Omega\times E \rightarrow (0,\infty)\) which is \(x\)-continuous and \(L(\theta_t\omega, \varphi(t,\omega)x)\downarrow 0\) as \(t\uparrow \infty\). In particular, we provide a constructive method for global Lyapunov functions for gradient-like random dynamical systems. This result generalizes an analogous theorem known for deterministic dynamical systems.
Keywords: dynamical system, random dynamical system, random differential equation, stochastic differential equation, potential kernel, domination principle, Lyapunov function.
Mathematics Subject Classification: 37H99, 37B25, 37B35, 47D07.
- L. Arnold, Random Dynamical Systems, Springer, Berlin, 1998.
- L. Arnold, B. Schmalfuss, Lyapunov's second method for random dynamical systems, J. Differ. Equ. 177 (2001), 235-265.
- N.P. Bhatia, G.P. Szegö, Stability Theory of Dynamical Systems, Grundl. Math. Wiss. 161, Springer, 1970.
- M.L. Bujorianu, M.C. Bujorianu, A Theory of Symbolic Dynamics for Hybrid Systems, [in:] Preprints of the 18th IFAC World Congress Milano (Italy), August 28 - September 2, 2011, pp. 8754-8759.
- M.L. Bujorianu, M.C. Bujorianu, H. Barringer, Systems Theory in an Analytic Setting, [in:] 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), Orlando, FL, USA, December 12-15, 2011, pp. 2901-2906.
- C. Castaing, M. Valadier, Convex Analysis and Measurable Multifunctions, Lect. Notes in Math. 580, Springer, Berlin, 1997.
- H. Craul, A uniformly exponential random forward attractor which is not a pullback attractor, Arch. Math. 78 (2002), 329-336.
- A. Hmissi, F. Hmissi, M. Hmissi, On gradient-like random dynamical systems, [in:] D. Fournier-Prunaret et al. (eds.), European Conference on Iteration Theory, Nant 2010, Esaim: Proceedings, 36, 2012, pp. 217-228.
- M. Hmissi, Semi-groupes déterministes, [in:] F. Hirsch, G. Mokobodzki (eds.), Séminaire de Théorie du Potentiel Paris, No. 5, Lect. Notes in Math. 1393, Springer, 1989, pp. 135-144.
- P.E. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations, Springer, Berlin, 1992.
- Z. Liu, The random case of Conley's theorem, Nonlinearity 19 (2006), 277-291.
- P.A. Meyer, Probability and Potentials, Blaisdell Publishing Company, Waltham, Massachusetts-Toronto-London, 1966.
- B. Øksendal, Stochastic Differential Equations, Universitex, Springer, Berlin, 6th ed., 2003.
- Mohamed Hmissi
- Université de Tunis Elmanar, Faculté des Sciences de Tunis, Département de Mathématiques, TN-2092 Elmanar, Tunis, Tunisia
- Al-Imam Muhammad Ibn Saud Islamic University, College of Science, Department of Mathematics and Statistics, P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Farida Mokchaha
- Université de Tunis Elmanar, Faculté des Sciences de Tunis, Département de Mathématiques, TN-2092 Elmanar, Tunis, Tunisia
- Al-Imam Muhammad Ibn Saud Islamic University, College of Science, Department of Mathematics and Statistics, P.O. Box 90950, Riyadh 11623, Saudi Arabia
- Aya Hmissi
- Université de Tunis Elmanar, Faculté des Sciences de Tunis, Département de Mathématiques, TN-2092 Elmanar, Tunis, Tunisia
- Communicated by Palle E.T. Jorgensen.
- Received: 2014-05-19.
- Revised: 2014-08-20.
- Accepted: 2014-10-24.
- Published online: 2015-02-06.